A mixed finite element method for the solutions of the von Kármán equations. (English) Zbl 0315.65064


65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74B99 Elastic materials
74K20 Plates
Full Text: DOI EuDML


[1] Agmon, S.: TheL p approach to the Dirichlet problem. Ann. Scuola Normale Pisa13, 405-448 (1959) · Zbl 0093.10601
[2] Berger, M. S.: On von Kármán’s equations and the buckling of a thin elastic plate. I. The clamped plate. Comm. Pure and Appl. Math.20, 687-720 (1967) · Zbl 0162.56405
[3] Berger, M. S., Fife, P.: On von Kármán’s equations and the buckling of a thin elastic plate. II. Plate with general edge conditions. Comm. Pure and Appl. Math.21, 227-241 (1968) · Zbl 0162.56501
[4] Friedrichs, K. O., Stoker, J. J.: The nonlinear boundary value problem of the buckled plate. Amer. J. Math.63, 839-888 (1941) · Zbl 0026.16301
[5] Johnson, C.: On the convergence of a mixed finite element method for plate bending problems. Numer. Math.21, 43-62 (1973) · Zbl 0264.65070
[6] Kantorovich, L. V., Akilov, G. P.: Functional analysis in normed spaces. Pergamon press 1964 · Zbl 0127.06104
[7] Keller, H. B., Reiss, E.: Iterative solutions for non-linear bending of circular plates. Comm. Pure and Appl. Math.11, 273-292 (1958) · Zbl 0081.18505
[8] Knightly, G. H.: An existence theorem for the von Kármán equations. Arch. Rational Mech. Anal.27, 233-242 (1967) · Zbl 0162.56303
[9] Krasnosel’skii, M. A. et al.: Approximate solution of operator equations: Wolters-Noordhoff 1972
[10] Miyoshi, T.: A finite element method for the solutions of fourth order partial differential equations. Kumamoto J. Sci. (Math.)9, 87-116 (1972) · Zbl 0249.35007
[11] Miyoshi, T.: Finite element method of mixed type and its convergence in linear shell problems. Kumamoto J. Sci. (Math.)10, 35-58 (1973) · Zbl 0277.73068
[12] Morosov, N.: On the non-linear theory of thin plates. Dokl. Akad. Nauk SSSR114, 968-971 (1957) · Zbl 0083.39904
[13] Pian, T. H. H., Tong, P.: Basis of finite element method for solid continua. Int. J. Numerical Methods Eng.1, 3-28 (1969) · Zbl 0252.73052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.