×

zbMATH — the first resource for mathematics

Computing the topological degree of a mapping in \(R^n\). (English) Zbl 0316.55007

MSC:
55M25 Degree, winding number
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Alexandroff, P., Hopf, H.: Topologie I. Springer-Verlag, N. Y. 1935 · JFM 61.0602.07
[2] Cronin, J.: Fixed points and topological degree in nonlinear analysis. Amer. Math. Soc. Surveys II (1964) · Zbl 0117.34803
[3] Heinz, E.: An elementary analytic theory of the degree of a mapping inn-dimensional space, J. Math. Mech.8, 231-247 (1959) · Zbl 0085.17105
[4] Brown, R. F.: The Lefschetz fixed point theorem. Glenview IV: Scott, Foreman and Co., 1971 · Zbl 0216.19601
[5] Krasnosel’skii, M. A.: Topological methods in the theory of nonlinear integral equations. Translated from Russian by A. H. Armstrong. N. Y.: McMillan 1964
[6] Alexandrov, P. S.: Combinatorial topology (Gustekhizat, 1947). English translation in 3 vols., Rochester: Graylock 1956-60
[7] Miranda, C.: Un’ osservazione su un teorema di Brouwer. Boll. Un. Mat. Ital.2, 5-7 (1940)
[8] Ortega, S. M., Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables. N. Y.: Acad. Press 1970 · Zbl 0241.65046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.