×

zbMATH — the first resource for mathematics

The wire-tap channel. (English) Zbl 0316.94017

MSC:
94A15 Information theory (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wyner A D. The wire-tap channel. Bell Syst Tech J, 1975, 54: 1355-1387 · Zbl 0316.94017
[2] Csiszár I, Körner J. Broadcast channels with confidential messages. IEEE Trans Inf Theory, 1978, 24: 339-348. · Zbl 0382.94017
[3] Leung-Yan-Cheong S, Hellman M. The Gaussian wire-tap channel. IEEE Trans Inf Theory, 1978, 24: 451-456 · Zbl 0384.94014
[4] Bloch M, Barros J, Rodrigues M R D, et al. Wireless information-theoretic security. IEEE Trans Inf Theory, 2008, 54: 2515-2534 · Zbl 1304.94096
[5] Gopala P K, Lai L, El Gamal H. On the secrecy capacity of fading channels. IEEE Trans Inf Theory, 2008, 54: 4687-4698 · Zbl 1247.94014
[6] Hero III A O. Secure space-time communication. IEEE Trans Inf Theory, 2003, 49: 3235-3249 · Zbl 1286.94052
[7] Parada P, Blahut R. Secrecy capacity of SIMO and slow fading channels. In: Proceedings of IEEE ISIT 2005, Adelaide, 2005. 2152-2155
[8] Goel S, Negi R. Guaranteeing secrecy using artificial noise. IEEE Trans Wirel Commun, 2008, 7: 2180-2189
[9] Khisti A, Wornell G W. Secure transmission with multiple antennas I: the MISOME wiretap channel. IEEE Trans Inf Theory, 2010, 56: 3088-3104 · Zbl 1366.94378
[10] Khisti A, Wornell G W. Secure transmission with multiple antennas II: the MIMOME wiretap channel. IEEE Trans Inf Theory, 2010, 56: 5515-5532 · Zbl 1366.94377
[11] Oggier F, Hassibi B. The secrecy capacity of the MIMO wiretap channel. IEEE Trans Inf Theory, 2011, 57: 4961-4972 · Zbl 1365.94318
[12] Li X, Hwu J, Ratazzi E P. Array redundancy and diversity for wireless transmissions with low probability of interception. In: Proceedings of 40th IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, 2006. IV
[13] Fei Z S, Ni J Q, Zhao D, et al. Ergodic secrecy rate of two-user MISO interference channels with statistical CSI. Sci China Inf Sci, 2014, 57: 102302
[14] Wang C, Wang H M. On the secrecy throughput maximization for MISO cognitive radio network in slow fading channels. IEEE Trans Inf Forensics Secur, 2014, 9: 1814-1827
[15] Wang H M, Yin Q, Xia X G. Distributed beamforming for physical-layer security of two-way relay networks. IEEE Trans Signal Process, 2012, 61: 3532-3545 · Zbl 1393.94085
[16] Wang H M, Luo M, Xia X G, et al. Joint cooperative beamforming and jamming to secure AF relay systems with individual power constraint and no eavesdropper’s CSI. IEEE Signal Process Lett, 2013, 20: 39-42
[17] Wang H M, Luo M, Yin Q, et al. Hybrid cooperative beamforming and jamming for physical-layer security of two-way relay networks. IEEE Trans Inf Forensics Secur, 2013, 8: 2007-2020
[18] Mu P, Wang H M, Yin Q. Improving the secrecy rate of wireless SIMO systems via two-step transmission. In: Proceedings of IEEE GLOBECOM 2013 Workshops, Atlanta, 2013. 1280-1285
[19] Rodrigues M R D, Somekh-Baruch A, Bloch M. On Gaussian wiretap channels with \(M\)-PAM inputs. In: Proceedings of IEEE European Wireless Conference, Lucca, 2010. 774-781
[20] Hjørungnes A. Complex-Valued Matrix Derivatives. Cambridge: Cambridge University Press, 2011 · Zbl 1263.94003
[21] Xiao C, Zheng Y R. On the mutual information and power allocation for vector Gaussian channels with finite discrete inputs. In: Proceedings of IEEE GLOBECOM, New Orleans, 2008. 1-5
[22] Geist J M. Capacity and cutoff rate for dense M-ary PSK constellations. In: Proceedings of Military Communications Conference, Monterey, 1990. 768-770
[23] Cover T M,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.