×

Supersolutions, monotone iterations, and stability. (English) Zbl 0319.35039


MSC:

35J60 Nonlinear elliptic equations
47H10 Fixed-point theorems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ako, K, On the Dirichlet problem for quasilinear elliptic differential equations of the second order, J. math. soc. Japan, 13, 45-62, (1961) · Zbl 0102.09303
[2] Amann, H, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana univ. math. J., 21, 125-146, (1971) · Zbl 0219.35037
[3] Amann, H, On the number of solutions of nonlinear equations in ordered Banach spaces, J. functional analysis, 11, 346-384, (1972) · Zbl 0244.47046
[4] Amann, H, Multiple positive fixed points of asymptotically linear maps, J. functional analysis, 17, 174-213, (1974) · Zbl 0287.47037
[5] {\scH. Amann and T. Laetsch}, Positive solutions of convex nonlinear eigenvalue problems, Indiana Univ. Math. J., to appear. · Zbl 0329.35028
[6] Bandle, C, Existence theorems, qualitative results, and a priori bounds for a class of nonlinear Dirichlet problems, Arch. rational mech. anal., 58, 219-238, (1975) · Zbl 0335.35046
[7] Bohl, E, Monotonie: Lösbarkeit und numerik bei operatorgleichungen, (1974), Springer-Verlag Berlin/New York · Zbl 0281.47032
[8] Cohen, D.S, Positive solutions of nonlinear eigenvalue problems: applications to nonlinear reactor dynamics, Arch. rational mech. anal., 26, 305-315, (1967) · Zbl 0173.13603
[9] Collatz, L, Funktionalanalysis und numerische Mathematik, (1964), Springer-Verlag Berlin/New York · Zbl 0139.09802
[10] Courant, R; Hilbert, D, ()
[11] Crandall, M.G; Rabinowitz, P.H, Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. rational mech. anal., 52, 161-180, (1973) · Zbl 0275.47044
[12] Crandall, M.G; Rabinowitz, P.H, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. rational mech. anal., 58, 207-218, (1975) · Zbl 0309.35057
[13] Fujita, H, On the nonlinear equations \(Δu + e\^{}\{u\} = 0 and∂v∂t = Δv + e\^{}\{v\}\), Bull. amer. math. soc., 75, 132-135, (1969) · Zbl 0216.12101
[14] Fujita, H, On the asymptotic stability of solutions of the equation vt = δu + ev, (), 252-259
[15] Jameson, G, Ordered linear spaces, () · Zbl 0196.13401
[16] Keener, J.P; Keller, H.B, Positive solutions of convex nonlinear eigenvalue problems, J. differential equations, 16, 103-125, (1974) · Zbl 0287.35074
[17] Keller, H.B; Cohen, D.S, Some positone problems suggested by nonlinear heat generation, J. math. mech., 16, 1361-1376, (1967) · Zbl 0152.10401
[18] Kirchgässner, K; Scheurle, J, Verzweigung und stabilität von Lösungen semilinearer elliptischer randwertprobleme, Jahresbericht der deutschen mathematiker vereinigung, 77, 39-54, (1975) · Zbl 0304.47056
[19] Krasnosel’skii, M.A, Positive solutions of operator equations, (1964), Noordhoff Groningen · Zbl 0121.10604
[20] Krein, M.G; Rutman, M.A, Linear operators leaving invariant a cone in a Banach space, Amer. math. soc. transl., ser. 1, 10, 199-325, (1962) · Zbl 0030.12902
[21] Laetsch, T, Uniqueness for sublinear boundary value problems, J. differential equations, 13, 13-23, (1973) · Zbl 0247.35052
[22] Parter, S.V, Solutions of a differential equation arising in chemical reactor processes, SIAM J. appl. math., 26, 687-716, (1974) · Zbl 0285.34013
[23] Sattinger, D.H, Topics in stability and bifurcation theory, () · Zbl 0466.58016
[24] Sattinger, D.H, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana univ. math. J., 21, 979-1000, (1972) · Zbl 0223.35038
[25] Schaefer, H.H, Topological vector spaces, (1971), Springer-Verlag New York/Berlin · Zbl 0217.16002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.