The existence of wave operators in scattering theory. (English) Zbl 0319.35059


35P25 Scattering theory for PDEs
47A40 Scattering theory of linear operators
35E99 Partial differential equations and systems of partial differential equations with constant coefficients
35B20 Perturbations in context of PDEs
Full Text: DOI EuDML


[1] Alsholm, P. K.: Wave operators for long-range scattering. Mimeographed manuscript · Zbl 0359.47006
[2] Alsholm, P. K., Kato, T.: Scattering with long range potentials. In: Partial Differential Equations. Proceedings of Symposia in pure Mathematics. Vol. 23 (Berkeley 1971), pp. 393-399. Providence: American Mathematical Society 1973
[3] Buslaev, V. S., Matveev, V. B.: Wave operators for the Schrödinger equation with a slowly decreasing potential. Theor. math. Phys.2, 266-274 (1970). (English translation from Russian)
[4] Cook, J. M.: Convergence to the Møller wave matrix. J. math. Phys.36, 82-87 (1957)
[5] Dollard, J. D.: Asymptotic convergence and the Coulomb interaction. J. math. Phys.5, 729-738 (1964)
[6] Dollard, J. D.: Quantum mechanical scattering theory for short-range and Coulomb interactions. Rocky Mountain J. Math.1, 5-88 (1971) · Zbl 0226.35074
[7] Haak, M. N.: On convergence to the Møller wave operators. Nuovo Cimento, X Ser.13, 231-236 (1959) · Zbl 0086.42804
[8] Hörmander, L.: Fourier integral operators I, Acta math.127, 79-183 (1971) · Zbl 0212.46601
[9] Jauch, J. M., Zinnes, I. I.: The asymptotic condition for simple scattering systems. Nuovo Cimento, X. Ser.11, 553-567 (1959)
[10] Jörgens, K., Weidmann, J.: Zur Existenz der Wellenoperatoren. Math. Z.131, 141-151 (1973) · Zbl 0252.35061
[11] Kuroda, S. T.: On the existence and the unitary property of the scattering operator. Nuovo Cimento, X. Ser.12, 431-454 (1959) · Zbl 0084.44801
[12] Veselic, K., Weidmann, J.: Existenz der Wellenopertoren für eine allgemeine Klasse von Operatoren. Math. Z.134, 255-274 (1973) · Zbl 0264.47012
[13] Veseli?, K., Weidmann, J.: Asymptotic estimates of wave functions and the existence of wave operators. J. Functional Analysis17, 61-77 (1974) · Zbl 0286.47006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.