On \(L_2-L_{p'}\) estimates for the wave-equation. (English) Zbl 0321.35052


35L30 Initial value problems for higher-order hyperbolic equations
35E15 Initial value problems for PDEs and systems of PDEs with constant coefficients
35S10 Initial value problems for PDEs with pseudodifferential operators
Full Text: DOI EuDML


[1] Domar, Y.: On the spectral synthesis problem for (n?1)-dimensional subsets of ? n , Ark. Mat.9, 23-37 (1971) · Zbl 0212.15004
[2] Hörmander, L.: Estimates for translation-invariant operators onL p-spaces, Acta math.104, 93-140 (1960) · Zbl 0093.11402
[3] Littman, W.: Fourier transformations of surface carried measures and differentiability of surface averages, Bull. Amer. math. Soc.69, 766-770 (1963) · Zbl 0143.34701
[4] Littman, W.:L p?Lq-estimates for singular integral operators arising from hyperbolic equations, In: Proceedings of Symposia in Pure Mathematics, Vol. 23. Partial Differential Equations, (Berkeley 1971). pp. 479-481. Providence: American Mathematical Society 1973
[5] Löfström, J.: Besov-spaces in the theory of approximation, Ann. Mat. pura appl. IV Ser.85, 93-184 (1970) · Zbl 0193.41401
[6] Petree, J.: Application de la théorie des espaces d’interpolation dans l’analyse harmonique, Ricerche Mat.15, 1-36 (1966)
[7] Strichartz, R.S.: Convolutions with kernels having singularities on a sphere, Trans. Amer. math. Soc.148, 461-471 (1970) · Zbl 0199.17502
[8] Strichartz, R.S.: A priori estimates for the wave-equation and some applications, J. functional Analysis5, 218-235 (1970) · Zbl 0189.40701
[9] Taibleson, M.H.: On the theory of Lipschitz-spaces of distributions on Euclideann-space, J. Math. Mech., I:13, 407-480 (1964), II:14, 821-840 (1965), III:15, 973-982 (1966)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.