×

zbMATH — the first resource for mathematics

Multiplicity free subgroups of compact connected Lie groups. (English) Zbl 0322.22011

MSC:
22E10 General properties and structure of complex Lie groups
22E15 General properties and structure of real Lie groups
22E60 Lie algebras of Lie groups
22E20 General properties and structure of other Lie groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H.Boerner, Darstellungen von Gruppen. Berlin-G?ttingen-Heidelberg 1955.
[2] A. Borel etJ. Siebenthal, Les sous-groupes ferm?s de rang maximum des groupes de Lie clos. Comment. Math. Helv.23, 200-221 (1949). · Zbl 0034.30701
[3] E. B.Dynkin, The maximal subgroups of the classical groups. Transl. Amer. Math. Soc. ser. 2, vol 6 (1957). · Zbl 0077.03403
[4] R. Godement, A theory of spherical functions. Trans. Amer. Math. Soc.73, 496-556 (1952). · Zbl 0049.20103
[5] F. E. Goldrich andE. P. Wigner, Condition that all irreducible representations of a compact Lie group, if restricted to a subgroup, contain no representation more than once. Canad. J. Math.24, 432-438 (1972). · Zbl 0235.22021
[6] G.Hochschild, The structure of Lie groups. San Francisco, London, Amsterdam 1965. · Zbl 0131.02702
[7] J. E.Humphreys, Introduction to Lie algebras and representation theory. New York-Heidelberg-Berlin 1972. · Zbl 0254.17004
[8] N.Jacobson, Lie algebras. New York-London-Sidney 1962. · Zbl 0121.27504
[9] M. Kr?mer, ?ber das Verhalten endlicher Untergruppen bei Darstellungen kompakter Liegruppen. Invent. Math.16, 15-39 (1972). · Zbl 0229.22023
[10] M.Kr?mer, ?ber Untergruppen als Isotropiegruppen bei linearen Aktionen. To appear.
[11] J.-P.Serre, Alg?bres de Lie semi-simples complexes. New York-Amsterdam 1966. · Zbl 0144.02105
[12] J.Tits, Tabellen zu den einfachen Liegruppen und ihren Darstellungen. Berlin-Heidelberg-New York 1967. · Zbl 0166.29703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.