×

Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade. (English) Zbl 0324.76001


MSC:

76A05 Non-Newtonian fluids
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Langlois, W. E., Steady flow of a slightly viscoelastic fluid between rotating spheres. Quart. Appl. Math. 21, 61-71 (1963). · Zbl 0112.40603
[2] Coleman, B. D., & W. Noll, An approximation theorem for functionals, with applications in continuum mechanics. Arch. Rational Mech. Anal. 6, 355-370 (1960). · Zbl 0097.16403
[3] Ting, T.-W., Certain non-steady flows of second order fluids. Arch. Rational Mech. Anal. 14, 1-26 (1963). · Zbl 0139.20105
[4] Coleman, B. D., & H. Markovitz, Normal stress effects in second-order fluids. J. Appl. Physics 35, 1-9 (1964). · Zbl 0133.19205
[5] Markovitz, H., & B. D. Coleman, Nonsteady helical flows of second-order fluids. Physics of Fluids 7, 833-841 (1964). · Zbl 0151.40101
[6] Coleman, B. D., R. J. Duffin, & V. Mizel, Instability, uniqueness, and non-existence theorems for the equation u t = u xx -u xtx on a strip. Arch. Rational Mech. Anal. 19, 100-116 (1965). · Zbl 0292.35016
[7] Coleman, B. D., & V. Mizel, Breakdown of laminar shearing flows for second-order fluids in channels of critical width. ZAMM 46, 445-448 (1966).
[8] Truesdell, C., Fluids of second grade regarded as fluids of convected elasticity. Physics of Fluids 8, 1936-1938 (1965).
[9] Coleman, B. D., Thermodynamics of materials with memory. Arch. Rational Mech. Anal. 17, 1-46 (1964).
[10] Coleman, B. D., & W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13, 167-178 (1963). · Zbl 0113.17802
[11] Gurtin, M. E., Modern Continuum Thermodynamics. Notas De Matemática Física, Vol. II. Instituto de Matemática, Universidade Federal do Rio de Janeiro, 1972.
[12] Coleman, Bernard D., & James M. Greenberg, Thermodynamics and the stability of fluid motion. Arch. Rational Mech. Anal. 25, 321-341 (1967). · Zbl 0156.23901
[13] Coleman, Bernard D., On the stability of equilibrium states of general fluids. Arch. Rational Mech. Anal. 36, 1-32 (1970). · Zbl 0211.28802
[14] Coleman, B. D., On the dynamical stability of fluid phases. IUTAM Symposium on Instability of Continuous Systems. Berlin-Heidelberg-New York: Springer, 1971. · Zbl 0261.76033
[15] Serrin, James, On the stability of viscous fluid motions. Arch. Rational Mech. Anal. 3, 1-13 (1959). · Zbl 0089.40803
[16] Joseph, Daniel D., & Roger L. Fosdick, The free surface on a liquid between cylinders rotating at different speeds, Part I. Arch. Rational Mech. Anal. 49, 321-380 (1973). · Zbl 0265.76113
[17] Joseph, Daniel D., Gordon S. Beavers, & Roger L. Fosdick, The free surface on a liquid between cylinders rotating at different speeds, Part II. Arch. Rational Mech. Anal. 49, 381-401 (1973). · Zbl 0265.76114
[18] Tanner, R. I., Some methods for estimating the normal stress functions in viscometric flows. Trans. Soc. Rheology 14, 483-507 (1970). · Zbl 0228.76010
[19] Gurtin, Morton E., On the thermodynamics of materials with memory. Arch. Rational Mech. Anal. 28, 40-50 (1968). · Zbl 0169.28002
[20] Truesdell, C., & W. Noll, The Non-Linear Field Theories of Mechanics. Flügge’s Handbuch der Physik, III/3. Berlin-Heidelberg-New York: Springer 1965.
[21] Truesdell, C., Rational Thermodynamics. New York: McGraw-Hill, 1969.
[22] Spencer, A. J. M., Theory of invariants. Continuum Physics, Vol. I, Ed. A. Cemal Eringen. New York: Academic Press 1971. · Zbl 0236.05110
[23] Ogawa, Hajimu, On lower bounds and uniqueness for solutions of the Navier-Stokes equations. J. Math. Mech. 18, 445-452 (1968). · Zbl 0176.40102
[24] Oldroyd, J. G., The motion of an elastico-viscous liquid contained between coaxial cylinders, I. Quart. J. Mech. Appl. Math. 4, 271-282 (1951). · Zbl 0043.39504
[25] Ericksen, J. L., Thermoelastic stability. Proc. 5th U.S. National Congr. Appl. Mech., 187-193 (1966).
[26] Dyer, R. H., & D. E. Edmunds, Lower bounds for solutions of the Navier-Stokes equations. Proc. London Math. Soc. 3, 169-178 (1968). · Zbl 0157.57005
[27] Garabedian, P., Partial Differential Equations. New York: Wiley, 1964. · Zbl 0124.30501
[28] Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon & Breach 1969. · Zbl 0184.52603
[29] Payne, L. E., & H. F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5, 286-292 (1960). · Zbl 0099.08402
[30] Friedman, Avner, Partial Differential Equations of Parabolic Type. Prentice Hall: Englewood Cliffs, N.J. 1964. · Zbl 0144.34903
[31] Fichera, G., Existence theorems in elasticity. Handbuch der Physik, VIa/2. Berlin-Heidelberg-New York: Springer 1972. · Zbl 0269.73028
[32] Payne, L. E., & H. F. Weinberger, On Korn’s inequality. Arch. Rational Mech. Anal. 8, 89-98 (1961). · Zbl 0107.31105
[33] Bernstein, B., & R. Toupin, Korn inequalities for the sphere and for the circle. Arch. Rational Mech. Anal. 6, 51-64 (1960). · Zbl 0094.30001
[34] Dafermos, C. M., Some remarks on Korn’s inequality. Z. Angew. Math. Phys. 19, 913-920 (1968). · Zbl 0169.55904
[35] Hardy, G. H., J. E. Littlewood, & G. Pólya, Inequalities. Cambridge: University Press 1964.
[36] Noll, W., A mathematical theory of the mechanical behavior of continuous media. Arch. Rational Mech. Anal. 2, 197-226 (1958). · Zbl 0083.39303
[37] Gurtin, Morton E., The linear theory of elasticity. Handbuch der Physik, VIa/2. BerlinHeidelberg-New York: Springer 1972. · Zbl 0317.73002
[38] Day, William Alan, The Thermodynamics of Simple Materials with Fading Memory. Springer Tracts in Natural Philosophy, Vol. 22. Berlin-Heidelberg-New York: Springer 1972. · Zbl 0295.73007
[39] Halmos, Paul Richard, Finite-Dimensional Vector Spaces. Princeton, N. J.: D. Van Nostrand 1958.
[40] Truesdell, C., The natural time of a viscoelastic fluid: its significance and measurement. Physics of Fluids 7, 1134-1142 (1964).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.