×

zbMATH — the first resource for mathematics

Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold. (English) Zbl 0325.53039

MSC:
53C20 Global Riemannian geometry, including pinching
58J40 Pseudodifferential and Fourier integral operators on manifolds
PDF BibTeX Cite
Full Text: DOI Numdam EuDML
References:
[1] M. BERGER , P. GAUDUCHON , et E. MAZET , Le spectre d’une variété riemannienne (Lecture Notes in Math., N^\circ . 194, Springer). MR 43 #8025 | Zbl 0223.53034 · Zbl 0223.53034
[2] R. BISHOP and R. CRISTTENDEN , Geometry of Manifolds , Academic Press, 1964 . Zbl 0132.16003 · Zbl 0132.16003
[3] J. D. BURAGO and V. A. ZALGALLER , Isoperimetric Problems for Regions on a Surface Having Restricted Width (Proceedings of Stek. Inst. Math., N^\circ . 76, 1965 .) MR 34 #1972 | Zbl 0167.50802 · Zbl 0167.50802
[4] I. CHAVEL and E. FELDMAN , The First Eigenvalue of the Laplacian on Manifolds of Non-Negative Curvature (to appear). · Zbl 0291.53021
[5] J. CHEEGER , The Relation Between the Laplacian and the Diameter for Manifolds of Non-Negative Curvature (Arch. der Math., Vol. 19, 1968 , p. 558-560). MR 38 #6503 | Zbl 0177.50201 · Zbl 0177.50201
[6] J. CHEEGER , A Lower Bound for the Smallest Eigenvalue of the Laplacian, In “Problems in Analysis, a symposium in honor of S. Bochner” , Princeton University Press, 1970 . Zbl 0212.44903 · Zbl 0212.44903
[7] S. Y. CHENG , Eigenfunctions and Eigenvalues of Laplacian (to ppear in the Proceedings of Symposium on Differential Geometry). Zbl 0308.35076 · Zbl 0308.35076
[8] S. Y. CHENG , Eigenvalue Comparison Theorems and its Geometric Applications (Math. Z., Vol. 143, 1975 , p. 289-297.) Article | MR 51 #14170 | Zbl 0329.53035 · Zbl 0329.53035
[9] L. KEEN , Collars on Riemann Surfaces, In “Discontinuous Groups and Riemann Surfaces” , edited by by GREENBERG, Princeton University Press, 1974 , p. 263-268. MR 52 #738 | Zbl 0304.30014 · Zbl 0304.30014
[10] A. HUBER , On the Isoperimetric Inequality on Surfaces of Variable Gaussian Curvature (Ann. of Math., Vol. 60, 1954 , p. 237-247). MR 16,508d | Zbl 0056.15801 · Zbl 0056.15801
[11] J. HERSCH , Caractérisation variationnelle d’une somme de valeurs propres consécutives (C. R. Acad. Sc., t. 252, 1961 , série A, p. 1714-1716). MR 23 #A3362 | Zbl 0096.08602 · Zbl 0096.08602
[12] E. MAZET , Une majoration de \lambda 1 du type de Cheeger (C. R. Acad. Sc., t. 277, série A, 1973 ). MR 50 #14581 | Zbl 0264.53021 · Zbl 0264.53021
[13] H. P. MCKEAN , An Upper Bound to the Spectrum on a Manifold of Negative Curvature (J. of Diff. Geom., Vol. 4, 1970 , p. 359-366). MR 42 #1009 | Zbl 0197.18003 · Zbl 0197.18003
[14] H. FEDERER , Geometric Measure Theory , Springer, 1969 . MR 41 #1976 | Zbl 0176.00801 · Zbl 0176.00801
[15] F. WARNER , Extensions of the Rauch Comparison Theorem to Submanifolds (Trans. Amer. Math. Soc., Vol. 122, 1966 , p. 341-356). MR 34 #759 | Zbl 0139.15601 · Zbl 0139.15601
[16] D. HOFFMAN , and J. SPRUCK , Sobolev and Isoperimetric Inequalities for Riemannian Submanifolds (to appear). Zbl 0295.53025 · Zbl 0295.53025
[17] J. MICHAEL , and L. SIMON , Sobolev and Mean Value Inequalities on Generalized Submanifolds of Rn (Comm. Pure and Appl. Math., 1973 , p. 361-379). MR 49 #9717 | Zbl 0256.53006 · Zbl 0256.53006
[18] L. GREEN , A Theorem of E. Hopf (Mich. Math. J., Vol., 5, 1958 , p. 31-34). Article | MR 20 #4300 | Zbl 0134.39601 · Zbl 0134.39601
[19] J. CHEEGER , and D. GROMOLL , The Splitting Theorem for Manifolds of Non-Negative Ricci Curvature (J. Diff. Geom., Vol. 6, 1971 , p. 119-128). MR 46 #2597 | Zbl 0223.53033 · Zbl 0223.53033
[20] J. MILNOR , A Note on Curvature and Fundamental Group (J. Diff. Geom., Vol. 2, 1968 , p. 1-8). MR 38 #636 | Zbl 0162.25401 · Zbl 0162.25401
[21] H. S. RUSE , A. G. WALKER , and T. J. WILLMORE , Harmonic Spaces , Edizioni Cremonese, Roma. Zbl 0134.39202 · Zbl 0134.39202
[22] A. C. ALLAMIGEON , Propriétés globales des espaces riemanniens harmoniques (Ann. Inst. Fourier, Vol. 15, N^\circ . 2, 1965 , p. 91-132). Numdam | MR 33 #6549 | Zbl 0178.55903 · Zbl 0178.55903
[23] C. B. MORREY , Multiple Integrals in the Calculus of Variations , Springer-Verlag, New York, 1966 . MR 34 #2380 | Zbl 0142.38701 · Zbl 0142.38701
[24] W. KLINGBERG , Contributions to Riemannian Geometry in the Large (Ann. Math., Vol. 69, 1959 , p. 654-666). MR 21 #4445 | Zbl 0133.15003 · Zbl 0133.15003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.