×

Finite element analysis of viscous, incompressible fluid flow. I: Basic methodology. (English) Zbl 0325.76036


MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Oden, J.T.; Wellford, L.C., Analysis of flow of viscous fluids by the finite element method, Aiaa j., 12, 1590-1599, (1972) · Zbl 0254.76043
[2] Olson, M.D., A variational finite element method for two-dimensional steady, viscous flows, (), 585-616
[3] Taylor, C.; Hood, P., A numerical solution of the Navier-Stokes equations using the finite element technique, Computers and fluids, 1, 73-100, (1973) · Zbl 0328.76020
[4] Nickell, R.E.; Tanner, R.I.; Caswell, B., The solution of viscous incompressible jet and free surface flows using finite element methods, J. fluid mech., 65, 189-206, (1974) · Zbl 0298.76022
[5] Argyris, J.H.; Mareczek, G., Finite element analysis of slow incompressible viscous fluid motion, Ing.-arch., 43, 92-109, (1974) · Zbl 0274.76028
[6] Roache, P.J., Computational fluid dynamics, (1972), Hermosa Pub Albuquergue, N.M · Zbl 0251.76002
[7] Tanner, R.I.; Nickell, R.E.; Bilger, R.W., Finite element methods for the solution of some incompressible non-Newtonian fluid mechanics problems with free surfaces, Comp. meth. appl. mech. eng., 6, 155, (1975) · Zbl 0314.76001
[8] Gartling, D.K., Finite element analysis of viscous, incompressible fluid flow, () · Zbl 0325.76036
[9] Glasndorff, P.; Prigogine, I., Thermodynamic theory of structure, stability and fluctuations, (1971), Wiley Interscience London · Zbl 0246.73005
[10] Cheng, R.T., Numerical solution of the Navier-Stokes equations by the finite element method, Physics of fluids, 12, 2098-2105, (1972) · Zbl 0252.76017
[11] Finlayson, B.A.; Scriven, L.E., On the search for variational principles, Int. J. heat mass transf., 10, 799-821, (1967) · Zbl 0148.44102
[12] Oden, J.T., Finite element analogue of Navier-Stokes equations, J. eng. mech. div., ASCE, 96, 529-534, (1970)
[13] Oden, J.T, Finite elements of nonlinear continua, (1972), McGraw-Hill New York · Zbl 0235.73038
[14] Strang, G.; Fix, G.J., An analysis of the finite element method, (1973), Prentice-Hall, Inc Englewood Cliffs, N.J · Zbl 0278.65116
[15] Kawahara, M.; Yoshimura, N.; Nakagawa, K., Steady laminar and turbulent flow analysis of incompressible viscous fluid by the finite element method, (1973), Dept. of Civil Engr. Chuo University Tokyo, Japan, unpublsihed Report · Zbl 0377.76027
[16] Guerra, F.M., An automated scheme for the coarse to fine mesh method, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.