×

Hypoellipticity on the Heisenberg group: representation-theoretic criteria. (English) Zbl 0326.22007


MSC:

22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
43A80 Analysis on other specific Lie groups
22E30 Analysis on real and complex Lie groups
17C10 Structure theory for Jordan algebras
35D05 Existence of generalized solutions of PDE (MSC2000)
65H10 Numerical computation of solutions to systems of equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] I. N. Bernšteĭn, Analytic continuation of generalized functions with respect to a parameter, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 26 – 40.
[2] J. Dixmier, Sur les représentations unitaires des groupes de Lie nilpotents. II, Bull. Soc. Math. France 85 (1957), 325 – 388 (French). · Zbl 0085.10303
[3] Jacques Dixmier, Sur les représentations unitaries des groupes de Lie nilpotents. III, Canad. J. Math. 10 (1958), 321 – 348. · Zbl 0100.32401
[4] J. Dixmier, Représentations irréductibles des algèbres de Lie nilpotentes, An. Acad. Brasil. Ci. 35 (1963), 491 – 519 (French). · Zbl 0143.05302
[5] -, Algèbres enveloppantes, Gauthier-Villars, Paris, 1974. · Zbl 0308.17007
[6] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), no. 2, 161 – 207. · Zbl 0312.35026
[7] G. B. Folland and E. M. Stein, Estimates for the \partial _{\?} complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429 – 522. · Zbl 0293.35012
[8] V. V. Grušin, Pseudodifferential operators in \?\(^{n}\) with bounded symbols, Funkcional. Anal. i Priložen 4 (1970), no. 3, 37 – 50 (Russian).
[9] V. V. Grušin, A certain class of hypoelliptic operators, Mat. Sb. (N.S.) 83 (125) (1970), 456 – 473 (Russian).
[10] V. V. Grušin, A certain class of elliptic pseudodifferential operators that are degenerate on a submanifold, Mat. Sb. (N.S.) 84 (126) (1971), 163 – 195 (Russian).
[11] V. W. Guillemin, Singular symbols (to appear). · Zbl 0462.58030
[12] SigurÄ’ur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962.
[13] L. Hörmander, Linear partial differential operators, Grundlehren math. Wiss., Bd. 116, Springer-Verlag, Berlin; Academic Press, New York, 1963. MR 28 #4221. · Zbl 0108.09301
[14] Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147 – 171. · Zbl 0156.10701
[15] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57 – 110 (Russian). · Zbl 0090.09802
[16] A. A. Kirillov, Plancherel’s measure for nilpotent Lie groups, Funkcional. Anal. i Priložen 1 (1967), no. 4, 84 – 85 (Russian). · Zbl 0176.30302
[17] Albert Messiah, Quantum mechanics. Vol. I, Translated from the French by G. M. Temmer, North-Holland Publishing Co., Amsterdam; Interscience Publishers Inc., New York, 1961. · Zbl 0102.42602
[18] Edward Nelson and W. Forrest Stinespring, Representation of elliptic operators in an enveloping algebra, Amer. J. Math. 81 (1959), 547 – 560. · Zbl 0092.32103
[19] Y. Nouazé and P. Gabriel, Idéaux premiers de l’algèbre enveloppante d’une algèbre de Lie nilpotente, J. Algebra 6 (1967), 77 – 99 (French). · Zbl 0159.04101
[20] Mustapha Raïs, Solutions élémentaires des opérateurs différentiels bi-inbariants sur un groupe de Lie nilpotent, C. R. Acad. Sci. Paris Sér. A-B 273 (1971), A495 – A498 (French). · Zbl 0236.46047
[21] Charles Rockland, Hypoellipticity and eigenvalue asymptotics, Lecture Notes in Mathematics, Vol. 464, Springer-Verlag, Berlin-New York, 1975. · Zbl 0302.35002
[22] Linda Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247 – 320. · Zbl 0346.35030
[23] E. M. Stein, Some problems in harmonic analysis suggested by symmetric spaces and semi-simple groups, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 173 – 189.
[24] François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. · Zbl 0171.10402
[25] R. Beals, Séminaire Goulaouic-Schwartz, 1977.
[26] -, Computes rendues du colloque de St.-Jean de Monts, June 1977.
[27] Pierre Cartier, Quantum mechanical commutation relations and theta functions, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 361 – 383.
[28] A. Dynin, Pseudodifferential operators on Heisenberg groups, Pseudodifferential operator with applications (Bressanone, 1977) Liguori, Naples, 1978, pp. 5 – 18. · Zbl 0454.58015
[29] B. Helffer, Hypoellipticité pour des opérateurs différentiels sur des groupes de Lie nilpotents, Pseudodifferential operator with applications (Bressanone, 1977) Liguori, Naples, 1978, pp. 73 – 88 (French). · Zbl 0464.58017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.