×

zbMATH — the first resource for mathematics

Qualitative analyses of communicable disease models. (English) Zbl 0326.92017

MSC:
92D25 Population dynamics (general)
34A99 General theory for ordinary differential equations
PDF BibTeX Cite
Full Text: DOI
References:
[1] Bailey, N.T.J., The mathematical theory of epidemics, (1957), Griffin London · Zbl 0115.37202
[2] Benenson, A.S., Control of communicable diseases in man, (1955), Am. Public Health Assoc New York
[3] Coddington, E.A.; Levinson, N., Theory of ordinary differential equations, (1955), McGraw-Hill New York · Zbl 0042.32602
[4] Cooke, K.L., Functional differential equations: some models and perturbation problems, (), 167-183 · Zbl 0189.40301
[5] Cooke, K.L.; Yorke, J.A., Some equations modelling growth processes and gonorrhea epidemics, Math. biosci., 16, 75-101, (1973) · Zbl 0251.92011
[6] Coppel, W.A., A survey of quadratic systems, J. differ. equations, 2, 293-304, (1966) · Zbl 0143.11903
[7] Dietz, K., Epidemics and rumors: a survey, J. roy. stat. soc., 130, 505-528, (1967), Ser. A
[8] Elveback, L.; Ackerman, E.; Gatewood, L.; Fox, J.P., Stochastic two agent simulation models for a community of families, Am. J. epidemiol., 93, 267-280, (1971)
[9] Gupta, N.K.; Rink, R.E., Optimum control of epidemics, Math. biosci., 18, 383-396, (1973) · Zbl 0267.92006
[10] Hethcote, H.W., Note on determining the limiting susceptible population in an epidemic model, Math. biosci., 9, 161-163, (1970) · Zbl 0212.52104
[11] Hethcote, H.W., Asymptotic behavior in a deterministic epidemic model, Bull. math. biol., 35, 607-614, (1973) · Zbl 0279.92011
[12] Hethcote, H.W., Asymptotic behavior and stability in epidemic models, (), Lecture Notes in Biomathematics · Zbl 0212.52104
[13] Hethcote, H.W.; Waltman, P., Optimal vaccination schedules in a deterministic epidemic model, Math. biosci., 18, 365-382, (1973) · Zbl 0266.92011
[14] Hoppensteadt, F.; Waltman, P., A problem in the theory of epidemics, Math. biosci., 9, 71-91, (1970) · Zbl 0212.52105
[15] Hoppensteadt, F.; Waltman, P., A problem in the theory of epidemics, II, Math. biosci., 12, 133-145, (1971) · Zbl 0226.92011
[16] Hurewicz, W., Lectures on ordinary differential equations, (1958), M.I.T. Press Cambridge, Mass · Zbl 0082.29702
[17] Kendall, D.G., Mathematical models of the spread of infection, () · Zbl 0672.60018
[18] Kermack, W.O.; McKendrick, A.G., Contributions to the mathematical theory of epidemics, part I, Proc. roy. soc. ser. A, 115, 700-721, (1927) · JFM 53.0517.01
[19] Kermack, W.O.; McKendrick, A.G., Contributions to the mathematical theory of epidemics, part II, Proc. roy. soc., ser. A, 138, 55-83, (1932) · Zbl 0005.30501
[20] A. Lajmanovich and J.A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., to appear. · Zbl 0344.92016
[21] London, W.P.; Yorke, J.A., Recurrent outbreaks of measles, chickenpox, and mumps I: seasonal variation in contact rates, Am. J. epidemiol., 98, 453-468, (1973)
[22] Ludwig, D., Final size distributions for epidemics, Math. biosci., 23, 33-46, (1975) · Zbl 0318.92025
[23] Radcliffe, J., The initial geographic spread of host-vector and carrier-borne epidemics, J. appl. probab., 1, 170-173, (1974) · Zbl 0288.60075
[24] Sanders, J.L., Quantitative guidelines for communicable disease control programs, Biometrics, 27, 883-893, (1971)
[25] Taylor, H.M., Some models in epidemic control, Math. biosci., 3, 383-398, (1968)
[26] Waltman, P., Deterministic threshold models in the theory of epidemics, () · Zbl 0293.92015
[27] Wilson, L.O., An epidemic model involving a threshold, Math. biosci., 15, 109-121, (1972) · Zbl 0258.92008
[28] Wilson, E.B.; Burke, M.H., The epidemic curve, Proc. nat. acad. sci., 28, 361-367, (1942) · Zbl 0063.08268
[29] Yorke, J.A., Selected topics in differential delay equations, (), 16-28, Lect. Notes Math., No. 243
[30] Yorke, J.A.; London, W.P., Recurrent outbreaks of measles, chickenpox, and mumps II: systematic differences in contact rates and stochastic effects, Am. J. epidemiol., 98, 469-482, (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.