Functional calculus for sesquilinear forms and the purification map. (English) Zbl 0327.46032


46C99 Inner product spaces and their generalizations, Hilbert spaces
47B15 Hermitian and normal operators (spectral measures, functional calculus, etc.)
46L05 General theory of \(C^*\)-algebras
47A60 Functional calculus for linear operators
Full Text: DOI


[1] Araki, H., Publ. RIMS Kyoto univ., 8, 439, (1973)
[2] Gradstejn, I.S.; Ryzik, I.M., Tablicy integralov, summ rjadov i proizvedenii, (1971), Moskva, (Russian)
[3] Haagerup, U., The standard forms of von Neumann algebras, 15, (1973), Kobenhavns Universiter, Matematisk Institut, preprint series N°
[4] Powers, R.T.; Stormer, E., Commun. math. phys., 16, 1, (1970)
[5] Takesaki, M., Tomita’s theory of modular Hilbert algebras and its applications, vol. 128, (1970), Springer Berlin-Heidelberg-New York, LNM · Zbl 0193.42502
[6] Topping, D., Lectures on von Neumann algebras, (1971), Van Nostrand Reinhold Company London · Zbl 0218.46061
[7] Woronowicz, S.L., Commun. math. phys., 28, 221, (1972)
[8] Woronowicz, S.L., Commun. math. phys., 30, 55, (1973)
[9] Woronowicz, S.L., Reports math. phys., 6, 487, (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.