×

zbMATH — the first resource for mathematics

Boolean powers. (English) Zbl 0328.08003

MSC:
08A05 Structure theory of algebraic structures
08-02 Research exposition (monographs, survey articles) pertaining to general algebraic systems
08B99 Varieties
03B25 Decidability of theories and sets of sentences
03C30 Other model constructions
PDF BibTeX Cite
Full Text: DOI
References:
[1] P. Bacsich,Primality and model completions, Alg. Univ.3 (1973), 265–270. · Zbl 0308.02052
[2] J. Baldwin and A. H. Lachlan,On universal Horn classes, Alg. Univ.3 (1973), 98–111. · Zbl 0272.02078
[3] S. Burris,Separating sets in modular lattices with applications to congruence lattices, Alg. Univ. (to appear). · Zbl 0321.06011
[4] S. Burris and E. Jeffers,On the simplicity and subdirect irreducibility of Boolean ultrapowers, Preliminary report, Notices Amer. Math. Soc.22 (1975), A-391. · Zbl 0397.03014
[5] S. Burris and H. P. Sankappanavar,Lattice-theoretic decision problems in universal algebra, Alg. Univ. (to appear). · Zbl 0322.02045
[6] C. C. Chang and H. J. Keisler,Model Theory, North Holland, 1973.
[7] S. Comer,Elementary properties of structures of sections, Bol. Soc. Mat. Mexicana (to appear). · Zbl 0338.02032
[8] S. Comer,Arithmetic properties of relatively free products, (Preprint). · Zbl 0294.08002
[9] A. Day,Injectivity in equational classes of algebras, Canad. J. Math.,24 (1972), 209–220. · Zbl 0254.08008
[10] Yu. L. Ershov,On the elementary theory of Post varieties, Algebra i Logika 6 (1967), 7–15, (Russian).
[11] S. Feferman and R. L. Vaught,The first-order properties of products of algebraic systems, Fund. Math.47 (1959), 57–103. · Zbl 0088.24803
[12] A. L. Foster,Generalized ’Boolean’ theory of universal algebras, part I. Subdirect sums and normal representation theorem. Math. Z.58 (1953), 306–336. · Zbl 0051.02201
[13] A. L. Foster,Generalized ’Boolean’ theory of universal algebras, part II. Identies and subdirect sums of functionally complete algebras, Math. Z.59 (1953), 191–199. · Zbl 0051.26202
[14] G. Fraser and A. Horn,Congruence relations in direct products, Proc. Amer. Math. Soc.26 (1970), 390–394. · Zbl 0241.08004
[15] M. Gould and G. Grätzer,Boolean extensions and normal subdirect powers of finite universal algebras, Math. Z.99 (1967), 16–25. · Zbl 0153.33901
[16] G. Grätzer,Universal Algebra, Van Nostrand, 1968.
[17] W. Hanf,On some fundamental problems concerning isomorphism of Boolean algebras, Math. Scand.5 (1957), 205–217. · Zbl 0081.26101
[18] Tah-Kai Hu,Stone duality for primal algebra theory, Math. Z.110 (1969), 180–198. · Zbl 0177.02602
[19] A. A. Iskander,On Boolean extensions of primal algebras, Math. Z.124 (1972), 203–207. · Zbl 0221.08011
[20] P. V. Jugannadham,A characterization of Boolean extension of universal algebras, Math. Ann.172 (1967), 119–123. · Zbl 0149.26002
[21] B. Jónsson,On isomorphism types of groups and other algebraic systems, Math. Scand.5 (1957), 224–229. · Zbl 0081.26201
[22] B. Jónsson,On direct decompositions of torsion-free Abelian groups, Math. Scand.5 (1957), 230–235. · Zbl 0081.26202
[23] B. Jónsson and P. Olin,Elementary equivalence and relatively free products of lattices, Preliminary report, Notices Amer. Math. Soc.21 (1974), A-370.
[24] B. Jónsson and A. Tarski,Direct Decompositions of Finite Algebraic Systems, Notre Dame Math. Lectures #5, 1947. · Zbl 0041.34501
[25] K. Keimel and H. Werner,Stone duality for varieties generated by quasi-primal algebras, Mem. Amer. Math. Soc.148 (1974), 59–85. · Zbl 0283.08001
[26] S. Kinoshita,A solution of a problem of R. Sikorski, Fund. Math.40 (1953), 39–41. · Zbl 0052.18902
[27] R. Kopperman,Model Theory and its Applications, Allyn and Bacon, 1972. · Zbl 0233.02021
[28] A. Macintyre,Model-completeness for sheaves of structures, (Preprint). · Zbl 0317.02065
[29] R. Mansfield,The theory of Boolean ultrapowers, Ann. of Math. Logic2 (1971), 297–325. · Zbl 0216.29401
[30] R. Magari,Una dimonstrazione del fatto che ogni varieta ammettee algebre simplici, Annali dell’ Universita di Ferrara (Nuova Serie), Sezione VII, Science Mathematiche, Vol.XIV. N.I.
[31] J. D. Monk and R. M. Solovay,On the number of complete Boolean algebras, Alg. Univ.2 (1972), 365–369. · Zbl 0261.06010
[32] A. Mostowski,On direct products of theories, J. Symbolic Logic17 (1952), 1–31. · Zbl 0047.00704
[33] B. H. Neumann and Sadayuki Yamamuro,Boolean powers of simple groups, J. Austral. Math. Soc.5 (1965), 315–324. · Zbl 0132.26901
[34] P. Olin,Elementary types of free products of Boolean algebras, Preliminary report, Notices Amer. Math. Soc.21 (1974), A-554.
[35] P. Olin,Free products and elementary equivalence, Pac. J. Math.52 (1974), 175–184. · Zbl 0257.02040
[36] A. I. Omarov,On subsystems of reduced powers, Algebra and Logic12 #1 (1973), 42–46, in the English translation. · Zbl 0286.02055
[37] R. S. Pierce,Modules over commutative regular rings, Mem. Amer. Math. Soc. No.70 (1967). · Zbl 0152.02601
[38] R. W. Quackenbush,Free products of bounded distributive lattices, Alg. Univ.2 (1972), 393–394. · Zbl 0272.06012
[39] M. O. Rabin,Decidability of second-order theories and automata on infinite trees, Trans. Amer. Math. Soc.141 (1969), 1–35. · Zbl 0221.02031
[40] P. Ribenboim,Boolean Powers, Fund. Math.65 (1969), 243–268.
[41] P. C. Rosenbloom,Post algebras. I: Postulates and general theory, Amer. J. Math.64 (1942), 167–188. · Zbl 0060.06701
[42] S. Shelah,Every two elementary equivalent models have isomorphic ultrapowers, Israel J. Math.10 (1971), 224–233. · Zbl 0224.02045
[43] T. Skolem,Untersuchungen über die Axiome des Klassenkalküls und über die Produktations- und Summations probleme, welche gewisse Klassen von Aussagen betreffen, Skrifter utgit av Videskapsselkapet i Kristiania, I Klasse, No. 3, 1919.
[44] N. V. Subrahmanyam,Boolean vector spaces. I., Math. Z.83 (1964), 422–433. · Zbl 0126.11601
[45] N. V. Subrahmanyam,Boolean vector spaces. II., Math. Z.87 (1965), 401–419. · Zbl 0198.45602
[46] A. Tarski,Cardinal Algebras, with an appendix by B. Jónsson and A. Tarski,Cardinal Products of Isomorphism Types, New York, 1949. · Zbl 0041.34502
[47] A. Tarski,Arithmetical classes and types of mathematical systems, mathematical aspects of arithmetical classes and types, arithmetical classes and types of Boolean algebras, arithmetical classes and types of algebraically closed and real-closed fields, Bull. Amer. Math. Soc.55 (1949), 63–64.
[48] A. Tarski,Remarks on direct products of commutative semigroups, Math. Scand.5 (1957), 218–223. · Zbl 0081.26102
[49] W. Taylor,The fine spectrum of a variety, (Preprint, 1974).
[50] R. L. Vaught,Denumerable models of complete theories, Proceedings of the Symposium in Foundations of Mathematics, Infinitistic Methods, New York 1961, 303–321. · Zbl 0113.24302
[51] J. Waszkiewicz and B. Weglorz,Some models of theories of reduced powers, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys.16 (1968), 683–685. · Zbl 0182.32402
[52] J. Waszkiewicz and B. Weglorz,On {\(\omega\)} 0 of powers, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys.17 (1969), 195–199.
[53] B. Weglorz,Equationally compact algebras (I), Fund. Math.59 (1966). 289–298. · Zbl 0221.02039
[54] B. Weglorz,Limit generalized powers, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astonom. Phys.16 (1968), 449–451. · Zbl 0252.02054
[55] B. Weglorz,Some remarks on reduced powers, (Abstract) J. Symbolic Logic39 (1974), p. 387.
[56] H. Werner,Congruences on products of algebras and functionally complete algebras, Alg. Univ.4 (1974), 99–105. · Zbl 0311.08006
[57] A. Wojciechowska,Generalized limit powers, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys.17 (1969), 121–122. · Zbl 0184.01304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.