×

zbMATH — the first resource for mathematics

A new definition of singular points in general relativity. (English) Zbl 0332.53039

MSC:
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
53C05 Connections, general theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Geroch, R. (1968).Ann. Phys.,48, 526. · Zbl 0167.56501 · doi:10.1016/0003-4916(68)90144-9
[2] Geroch, R. (1968).J. Math. Phys.,9, 450. · Zbl 0172.27905 · doi:10.1063/1.1664599
[3] Hawking, S. W.Singularities and the Geometry of Space-Time. (Unpublished essay submitted for the Adams Prize, Cambridge University, December, 1966.)
[4] Kobayashi, S. and Nomizu, K. (1963).Foundations of Differential Geometry, Vol. I, Interscience, New York. · Zbl 0119.37502
[5] Hicks, N. J. (1965).Notes on Differential Geometry, D. van Nostrand Company, Inc., Princeton, New Jersey. · Zbl 0132.15104
[6] Bishop, R. L. and Crittenden, R. J. (1964).Geometry of Manifolds, Academic Press, New York. · Zbl 0132.16003
[7] Penrose, R. (1968).Battelle Rencontres (ed. DeWitt, C. M. and Wheeler, J. A.), W. A. Benjamin, Inc., New York.
[8] Hocking, J. G. and Young, G. S. (1961).Topology, Addison-Wesley Publishing Company, Inc. · Zbl 0135.22701
[9] Dieudonn√©, I. (1960).Foundations of Modern Analysis, Academic Press, New York. · Zbl 0100.04201
[10] Schubert, H. (1964).Topologie, B. G. Teubner Verlagsgesellschaft, Stuttgart.
[11] Kelley, J. L. (1955).General Topology, D. van Nostrand Company, Inc., Princeton, New Jersey. · Zbl 0066.16604
[12] Misner, C. W. (1963).J. Math. Phys.,4, 924. · doi:10.1063/1.1704019
[13] Newman, E. T. and Posadas, R. (1969).The Motion and Structure of Singularities in General Relativity, Pittsburgh. · Zbl 0186.28702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.