zbMATH — the first resource for mathematics

On thermodynamics and thermostatics of viscous thermoelastic solids in the electromagnetic fields. A Lagrangian formulation. (English) Zbl 0332.73095

74F15 Electromagnetic effects in solid mechanics
74D99 Materials of strain-rate type and history type, other materials with memory (including elastic materials with viscous damping, various viscoelastic materials)
Full Text: DOI
[1] Hutter, K., & Y.H. Pao, A theory of magnetizable elastic solids with thermal and electrical conduction. J. Elasticity 4, 89-114 (1974). · Zbl 0286.73081 · doi:10.1007/BF00045660
[2] McCarthy, M.F., Thermodynamics of electromagnetic materials with memory. Arch. Rational Mech. Analysis 41, 333-353 (1971). · doi:10.1007/BF00281871
[3] McCarthy, M.F., Correction: Thermodynamics of electromagnetic materials with memory. Arch. Rational Mech. Analysis 46, 395-397 (1972). · doi:10.1007/BF00281106
[4] Jenkins, J.T., A theory of magnetic fluids. Arch. Rational Mech. Analysis 46, 42-60 (1972). · Zbl 0241.76014 · doi:10.1007/BF00251867
[5] Liu, I.S., & I. Müller, On the thermodynamics and thermostatics of fluids in electromagnetic fields. Arch. Rational Mech. Analysis 46, 149-176 (1972). · Zbl 0252.76072
[6] Müller, I., Die Kältefunktion, eine universelle Funktion in der Thermodynamik viskoser wärmeleitender Flüssigkeiten. Arch. Rational Mech. Analysis 40, 1-36 (1971). · Zbl 0229.73003 · doi:10.1007/BF00281528
[7] Müller, I., On the entropy inequality. Arch. Rational Mech. Analysis 26, 118-141 (1967). · Zbl 0163.46701 · doi:10.1007/BF00285677
[8] Liu, I.S., Method of Lagrange multipliers for the exploitation of the entropy principle. Arch. Rational Mech. Analysis 46, 131-148 (1972). · Zbl 0252.76003
[9] Müller, I., The coldness, a universal function in thermoelastic bodies. Arch. Rational Mech. Analysis 41, 319-332 (1972). · Zbl 0225.73003
[10] Benach, R., & I. Müller, Thermodynamics and the description of magnetizable dielectric mixtures of fluids. Arch. Rational Mech. Analysis 53, 312-346 (1974). · Zbl 0286.76002 · doi:10.1007/BF00281489
[11] Toupin, R.A., Dynamical theory of elastic dielectrics. Int. J. Engr. Sci., 1, 101-126 (1963). · doi:10.1016/0020-7225(63)90027-2
[12] Truesdell, C.A., & R.A. Toupin, The Classical Field Theories. In: Handbuch der Physik, edited by S. Flügge. Berlin, New York, Heidelberg: Springer 1960.
[13] Hutter, K., Electrodynamics of Deformable Continua. Ph.D. Dissertation, Cornell University, Ithaca N.Y. (1973).
[14] Truesdell, C., & W. Noll, The Nonlinear Field Theories of Mechanics. In: Handbuch der Physik Vol. III/3 edited by S. Flügge. Berlin, New York, Heidelberg: Springer 1965. · Zbl 0779.73004
[15] Müller, I., Thermodynamik, die Grundlagen der Materialtheorie. Bertelsmann Universitätsverlag (1973).
[16] Liu, I.S., On Irreversible Thermodynamics. Dissertation, The Johns Hopkins University (1972).
[17] Smith, G.F., On isotropic integrity bases. Arch. Rational Mech. Analysis 18, 282-292 (1965). · Zbl 0129.00902 · doi:10.1007/BF00251667
[18] Wang, C.-C., A new representation theorem for isotropic functions: An answer to Professor G.F. Smith’s criticism of my papers on representations for isotropic functions. Arch. Rational Mech. Analysis 33, 166-223 (1969).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.