×

zbMATH — the first resource for mathematics

Structure groups and Lie algebras of Jordan algebras of symmetric elements of associative algebras with involution. (English) Zbl 0333.17009

MSC:
17C30 Associated groups, automorphisms of Jordan algebras
16W10 Rings with involution; Lie, Jordan and other nonassociative structures
16Kxx Division rings and semisimple Artin rings
17B60 Lie (super)algebras associated with other structures (associative, Jordan, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ancochea, G, On semi-automorphisms of division algebras, Ann. math., 48, 147-154, (1947) · Zbl 0029.10703
[2] Braun, H; Koecher, M, Jordan-algebren, (1966), Springer-Verlag Berlin · Zbl 0145.26001
[3] Chevalley, C; Schafer, R.D, The exceptional Lie algebras F4 and E6, (), 137-141 · Zbl 0037.02003
[4] Frobenius, G, Über die darstellung der endlichen gruppen durch lineare substitutionen, S.-B. Berlin akad., 994-1015, (1897) · JFM 28.0130.01
[5] Herstein, I.N, Jordan homomorphisms, Trans. amer. math. soc., 81, 331-341, (1956) · Zbl 0073.02202
[6] Herstein, I.N, Topics in ring theory, (1969), University of Chicago Press Chicago, Ill · Zbl 0232.16001
[7] Hua, L.K, On the automorphisms of a s-field, (), 386-389 · Zbl 0033.10402
[8] Jacobson, N, Structure of rings, () · JFM 65.1131.01
[9] Jacobson, N, Exceptional Lie algebras, (), published in augmented from by · JFM 61.1044.02
[10] Jacobson, N; Jacobson, N, Some groups of linear transformations defined by Jordan algebras III, J. reine angew. math., J. reine angew. math., 207, 61-85, (1961) · Zbl 0142.26501
[11] Jacobson, N, Structure and representations of Jordan algebras, () · Zbl 0218.17010
[12] Jacobson, N, Lectures on quadratic Jordan algebras, (1969), Tata Institute of Fundamental Research Bombay · Zbl 0253.17013
[13] Jacobson, N, Connections between associative and Jordan rings, (), 261-268
[14] Jacobson, N, PI-algebras, () · Zbl 0285.16012
[15] Jacobson, N; Katz, J, Generically algebraic quadratic Jordan algebras, Scripta math., 29, 215-227, (1973) · Zbl 0291.17010
[16] Jacobson, N; McCrimmon, K, Quadratic Jordan algebras of quadratic forms with base points, J. Indian math. soc., 35, 1-45, (1971) · Zbl 0253.17014
[17] Jacobson, N; Rickart, C.E, Jordan homomorphisms of rings, Trans. amer. math. soc., 69, 479-502, (1950) · Zbl 0039.26402
[18] Jacobson, N; Rickart, C.E, Homomorphisms of Jordan rings of self-adjoint elements, Trans. amer. math. soc., 72, 310-322, (1952) · Zbl 0046.25603
[19] Kaplansky, I, Semi-automorphisms of rings, Duke math. J., 14, 37-50, (1947)
[20] Koecher, M, Jordan algebras and their applications, (1962), University of Minnesota Lecture Notes Minneapolis · Zbl 0128.03101
[21] Loos, O, Jordan pairs, () · Zbl 0301.17003
[22] McCrimmon, K, A general theory of Jordan rings, (), 1072-1079 · Zbl 0139.25502
[23] McCrimmon, K, The freudenthal-Springer-Tits construction of exceptional Jordan algebras, Trans. amer. math. soc., 139, 495-510, (1969) · Zbl 0175.02703
[24] McCrimmon, K, The freudenthal-Springer-Tits constructions revisited, Trans. amer. math. soc., 148, 293-314, (1970) · Zbl 0224.17013
[25] McCrimmon, K, The generic norm of an isotope of a Jordan algebra, Scripta math., 29, 229-236, (1975) · Zbl 0288.17010
[26] Martindale, W.S, Jordan homomorphisms of symmetric elements of a ring with involution, J. algebra, 5, 232-249, (1967) · Zbl 0164.03601
[27] Racine, M, A note on quadratic Jordan algebras of degree 3, Trans. amer. math. soc., 164, 93-103, (1972) · Zbl 0236.17007
[28] Serre, J.P, Lie algebras and Lie groups, (1965), Harvard University Lecture Notes Benjamin
[29] Smith, B.D, Jordan rings with polynomial identities, ()
[30] Springer, T.A, Jordan algebras and algebraic groups, () · Zbl 0259.17003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.