zbMATH — the first resource for mathematics

Sensitivity analysis of ordinary differential equation systems - a direct method. (English) Zbl 0333.65038

65L05 Numerical methods for initial value problems involving ordinary differential equations
65Z05 Applications to the sciences
34C99 Qualitative theory for ordinary differential equations
93B35 Sensitivity (robustness)
68U20 Simulation (MSC2010)
Full Text: DOI
[1] Gelinas, R.J., J. camp. phys., 9, 222, (1972)
[2] Tomovic, R.; Vukobratovic, M., General sensitivity: theory, (1972), Elsevier New York · Zbl 0302.93014
[3] Atherton, R.W.; Schainker, R.B.; Ducot, E.R., Aiche j., (1975), March
[4] Cukier, R.I.; Fortuin, C.M.; Schuler, K.E.; Petschek, A.G.; Schaibly, J.H., J. chem. phys., 59, 3873, (1973)
[5] Schaibly, J.H.; Schuler, K.E., J. chem. phys., 59, 3879, (1973)
[6] Gelinas, R.J.; Dickinson, R.P., GENKIN-I, a general atmospheric code-atmospheric applications, LLL report, UCID-16577, (August 6, 1974)
[7] Courant, R., ()
[8] Gelinas, R.J., ()
[9] Byrne, G.D.; Hindmarsh, A.C., ACM trans. math. software, 1, 71, (1975)
[10] {\scA. C. Hindmarsh and G. D. Byrne}, EPISODE: an experimental package for the integration of systems of ordinary differential equations, LLL Report, UCID-in process. · Zbl 0311.65049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.