zbMATH — the first resource for mathematics

A class of iterative methods for finite element equations. (English) Zbl 0334.65028

65F10 Iterative numerical methods for linear systems
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI
[1] Young, D.M., Iterative solution of large linear systems, (1971), Academic Press New York · Zbl 0204.48102
[2] Lebedev, V.I.; Finogenov, S.A.; Lebedev, V.I.; Finogenov, S.A., On the order of choice of the iteration parameters in the Chebyshev cyclic iteration method, Zh. vych. mat. i mat. fiz., Zh. vych. mat. i mat. fiz., 13, 18-33, (1973) · Zbl 0271.65026
[3] Engeli, M.; Ginsburg, Th.; Rutishauser, H.; Stiefel, E., Refined iterative methods for computation of the solution and the eigenvalues of self-adjoint boundary value problems, (), no. 8 · Zbl 0089.12103
[4] Axelsson, O., On preconditioning and convergence acceleration in sparse matrix problems, Cern 74-10, (1974), Geneva · Zbl 0354.65020
[5] Fox, R.L.; Stanton, E.L., Developments in structured analysis by direct energy minimization, Aiaa j., 6, 1036-1042, (1968) · Zbl 0157.55905
[6] Fried, I., More on gradient iterative methods in finite element analysis, Aiaa j., 7, 565-567, (1969) · Zbl 0185.52602
[7] Argyris, J.H.; Brønlund, O.E., The natural factor formulation of the stiffness for the matrix displacement method, Comp. meth. appl. mech. eng., 5, 97-119, (1975) · Zbl 0291.73051
[8] Argyris, J.H., On numerical error in the finite element method, ISD report no. 177, (1975), Stuttgart · Zbl 0404.73076
[9] Stone, H.L., Iterative solution of implicit approximations of multidimensional partial differential equations, SIAM J. numer. anal., 5, 530-558, (1968) · Zbl 0197.13304
[10] Axelsson, O., A generalized SSOR method, Bit, 13, 443-457, (1972) · Zbl 0256.65046
[11] Van Der Vorst, H.A., Some comments on an iterative method for the solution of large linear systems, () · Zbl 0621.65022
[12] Andersson, L., SSOR preconditioning of Toeplitz matrices with applications to elliptic equations, ()
[13] Andersson, L., ()
[14] Ståhl, C.E., (), [Swedish]
[15] Lebedev, V.I., Iterative methods for the solution of operator equations with their spectrum on several intervals, Zh. vych. mat. i mat. fiz., 9, 1247-1252, (1969)
[16] Todd, J., Introduction to the constructive theory of functions, () · Zbl 0114.26903
[17] George, A., Nested dissection of a regular finite element mesh, SIAM J. numer. anal., 10, 345-363, (1973) · Zbl 0259.65087
[18] George, A., Numerical experiments using dissection methods to solve n by n grid problems, () · Zbl 0356.65023
[19] Axelsson, O., High-order methods for parabolic problems, J. comp. appl. math., 1, 5-16, (1975) · Zbl 0313.65102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.