zbMATH — the first resource for mathematics

Structure of the set of stationary solutions of the Navier Stokes equations. (English) Zbl 0335.35077

35Q30 Navier-Stokes equations
35B99 Qualitative properties of solutions to partial differential equations
Full Text: DOI
[1] and , Transversal Mappings and Flows, W. A. Benjamin, Amsterdam, New York, 1967.
[2] Lectures on Elliptic Boundary Value Problems, New York, 1965.
[3] Cattabriga, Rend. Sem. Mat. Univ. Padova 31 pp 308– (1961)
[4] Foias, Rend. Sem. Mat. Univ. Padova 48 pp 219– (1972)
[5] Rend. Sem. Mat. Univ. Padova 1973, pp. 9–123.
[6] and , On the Stationary Statistical Solutions of the Navier-Stokes Equations and Turbulence, Publication Mathématique d’Orsay, n\(\deg\) 120-75-28, 1975.
[7] Foias, Rend. Sem. Mat. Univ. Padova 39 pp 1– (1967)
[8] The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969.
[9] Leray, J. Math. Pures Appl. XIII 1934 pp 331–
[10] Leray, J. Math. Pures Appl. pp 331– (1934)
[11] Leray, Acta Math. 63 pp 193– (1934)
[12] and , Nonhomogeneous Boundary Value Problems and Applications, Springer Verlag, Heidelberg, New York, 1973. · doi:10.1007/978-3-642-65393-3
[13] Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Gauthier-Villars, Paris, 1969.
[14] Etude asymptotique des valeurs propres et de la fonction spectrale de problèmes aux limits, Thesis, University of Nice, 1976.
[15] Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, Paris, 1967.
[16] Smale, Amer. J. Math. 87 pp 861– (1965)
[17] Solonnikov, Dok. Acad. U.S.S.R. 130 pp 988– (1960)
[18] Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, 1976.
[19] Une propriété générique de l’ensemble des solutions stationnaires ou périodiques des equations de Navier-Stokes, Symposium Franco-Japonais, Septembre 1976, to appear.
[20] Vorovich, Mat. Sborn. 53 pp 393– (1961)
[21] Minea, Revue Roum. Math. Pures et Appl. pp 1071– (1976)
[22] Foias, Annali Scuola Norm. Sup. di Pisa
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.