×

zbMATH — the first resource for mathematics

Cycles for the dynamical study of foliated manifolds and complex manifolds. (English) Zbl 0335.57015

MSC:
57R30 Foliations in differential topology; geometric theory
32C15 Complex spaces
57R25 Vector fields, frame fields in differential topology
58A25 Currents in global analysis
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] [As] Asimov, D.: Homotopy to divergence?free vector fields and an obstruction to finding a volume preserved by a non-singular vector field. I.A.S. Preprint (1976) · Zbl 0343.57011
[2] [Bo] Bourbaki, N., Livre VI. Integration, Ch. 6, p. 58 Paris: Hermann
[3] [De] De Rham, G.: Variétés différentiables. Formes, courantes, formes harmoniques. Paris: Hermann 1955
[4] [E] Epstein, D.: Periodic Flows on 3-manifolds. Ann. of Math. (2) 95 (1972) · Zbl 0231.58009
[5] [EMS] Edwards, R., Millett, K., Sullivan, D.: Foliations with all leaves compact. To appear in Topology (1976). · Zbl 0356.57022
[6] [F] Federer, H.: Geometric measure theory. Die Grundlehren ... Band 153. New York: Springer 1969 · Zbl 0176.00801
[7] [Fr] Fried, D.: To appear
[8] [H] Haefliger, A.: Séminaire de Bourbaki 1967, Exposés 339 ?Travaux de Novikov sur les feulletages?
[9] [HE] Hawking, S. W., Ellis, G. F. R.: The large scale structure of space-time, p. 198. Cambridge: University Press 1973 · Zbl 0265.53054
[10] [K] King, J.: The currents defined by analytic varieties. Acta Mathematical vol. 127, 1871 · Zbl 0224.32008
[11] [M] Montgomery, D.: Pointwise Periodic Homeomorphisms. Amer. J. Math. 59 (1937) · JFM 63.0565.05
[12] [P] Plante, J.: Foliations with measure preserving holonomy. Ann. Math.102, 327-362 (1975) · Zbl 0314.57018 · doi:10.2307/1971034
[13] [Ph] Phelps, R.: Lectures on Choquet’s theorem. Van Nostrand, Math. Studies # 7 (1966) · Zbl 0135.36203
[14] [PS] Phillips, A. Sullivan, D.: Geometry of Leaves. In preparation · Zbl 0454.57016
[15] [R] Ruelle, D.: Statistical mechanics. New York: Benjamin 1969 · Zbl 0177.57301
[16] [RS] Ruelle, D., Sullivan, D.: Currents, flows, and diffeomorphisms. Topology vol. 14 # 4. · Zbl 0321.58019
[17] [Sc] Schwartz, L.: Théorie des distributions. Nouvelle Edition. Paris: Hermann 1966
[18] [Sch] Schwartzmann, S.: Asymptotic cycles. Ann. Math.66, 270-284 (1957) · Zbl 0207.22603 · doi:10.2307/1969999
[19] [S] Sullivan, D.: A counterexample to the periodic orbit conjecture. To appear Publications I.H.E.S. vol. 46. Also ?A New Flow? B.A.M.S. (to appear) 1976
[20] [SW] Sullivan, D. Williams, R.: Homology of attractors. To appear in Topology (1976)
[21] [W] Whitney, H.: Geometric integration theory, Princeton: University Press 1957 · Zbl 0083.28204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.