Halasz, G. Remarks on the remainder in Birkhoff’s ergodic theorem. (English) Zbl 0336.28005 Acta Math. Acad. Sci. Hung. 28, 389-395 (1976). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 16 Documents MSC: 28D05 Measure-preserving transformations 11K06 General theory of distribution modulo \(1\) PDF BibTeX XML Cite \textit{G. Halasz}, Acta Math. Acad. Sci. Hung. 28, 389--395 (1976; Zbl 0336.28005) Full Text: DOI References: [1] M. Smorodinsky,Ergodic Theory, Entropy. Lecture Notes in Mathematics 214, Springer Verlag. [2] E. Hecke, Analytische Funktionen und die Verteilung von Zahlen mod. eins,Abh. Math. Semin. Hamburg Univ.,1 (1922), 54–76. · JFM 48.0197.03 · doi:10.1007/BF02940580 [3] H. Kesten, On a conjecture of Erdos and Szüsz related to uniform distribution mod 1,Acta Arithm. XII (1966), 193–212. · Zbl 0144.28902 [4] H. Furstenberg, H. Keynes andL. Shapiro, Prime flows in topological dynamics,Israel J. Math.,14(1) (1973), 26–38. · Zbl 0264.54030 · doi:10.1007/BF02761532 [5] Vera T. Sós, On the distribution of the sequence (n\(\alpha\)),Tagungsbericht, Math. Inst. Oberwolfach,28 (1972). [6] S. Kakutani, Induced measure preserving transformations,Proc. Imp. Acad. Tokyo,19 (1943), 635–641. · Zbl 0060.27406 · doi:10.3792/pia/1195573248 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.