zbMATH — the first resource for mathematics

Approximation of partial sums of i.i.d. r.v.s when the summands have only two moments. (English) Zbl 0338.60032

60G50 Sums of independent random variables; random walks
Full Text: DOI
[1] Heyde, C.C.: Some properties of metrics in a study on convergence to normality. Z. Wahrscheinlichkeitstheorie verw. Gebiete 11, 181-192 (1969) · Zbl 0169.20902 · doi:10.1007/BF00536379
[2] Komlós, J., Major, P., Tusnády, G.: An approximation of Partial Sums of Independent RV’s and the Sample D.F. (II). Z. Wahrscheinlichkeitstheorie verw. Gebiete 34, 33-58 (1976) · Zbl 0307.60045 · doi:10.1007/BF00532688
[3] Major, P.: The approximation of partial sums of independent RV’s. Z. Wahrscheinlichkeitstheorie verw. Gebiete 35, 213-220 (1976) · Zbl 0338.60031 · doi:10.1007/BF00532673
[4] Loève, M.: Probability Theory. Toronto-New York-London: Van Nostrand 1963 · Zbl 0095.12201
[5] Strassen, V.: An invariance principle for the law of iterated logarithm. Z. Wahrscheinlichkeitstheorie verw. Gebiete 3, 211-226 (1964) · Zbl 0132.12903 · doi:10.1007/BF00534910
[6] Wichura, M.J.: Inequalities with application to weak convergence of random processes with multi-dimensional time parameters. Ann. Math. Statist. 40, 681-687 (1969) · Zbl 0214.17701 · doi:10.1214/aoms/1177697741
[7] Wichura, M.J.: Some Strassen type laws of the iterated logarithm for multiparameter stochastic processes. Ann. Probab. 1, 272-296 (1973) · Zbl 0288.60030 · doi:10.1214/aop/1176996980
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.