×

zbMATH — the first resource for mathematics

Theory of summability of sequences and series. (English) Zbl 0339.40007

MSC:
40G05 Cesàro, Euler, Nörlund and Hausdorff methods
40D20 Summability and bounded fields of methods
40G10 Abel, Borel and power series methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Abel, ?Summability factors for Cesàro methods of complex order,? Uch. Zap. Tartusk. Univ.,177, 92?105 (1965). · Zbl 0147.04903
[2] M. Abel, ?Summability factors of the first kind for Cesàro methods of complex order,? Uch. Zap. Tartusk. Univ.,220, 145?153 (1968).
[3] M. Abel, ???-convergence factors for Cesàro methods of complex order,? Uch. Zap. Tartusk. Univ.,253, 179?193 (1970).
[4] M. Abel and Kh. Tyurnpu, ??-convergence factors,? Uch. Zap. Tartusk. Univ.,206, 106?121 (1967).
[5] F. I. An and M. A. Subkhankulov, ?A Tauberian theorem and its application to the question of the rapidity of the convergence of Fourier series,? Izv. Akad. Nauk UzSSR, Ser. Fiz.-Matem. Nauk, No. 2, 5?13 (1964).
[6] A. F. Afanas’eva, ?Inclusion of Voronoi methods of summation of series in arbitrary Kojima matrices on a set of bounded sequences,? Uch. Zap. Yarosl. Gos. Ped. Inst.,82, 7?18 (1971).
[7] S. M. Bakusova, ?Consistency of linear operators in spaces of sequences,? Izv. Vyssh. Ucheb. Zaved. Matem. · Zbl 0302.46005
[8] S. M. Bakusova, ?Analogs of singularity fixation principle and Banach-Steinhaus theorems in spaces of sequences,? Ural University, Sverdlovsk (1973) (deposited in VINITI Nov. 1, 1973, No. 7224?73).
[9] S. M. Bakusova, ?Certain properties of fields of effectiveness of linear operators,? Ural University, Sverdlovsk (1973) (deposited in VINITI, Nov. 1, 1973, No. 7223?73).
[10] M. A. Barkar’, ?Summability of numerical sequences using arithmetic means methods,? Uch. Zap. Kishinvesk Univ.,70, 9?16 (1964).
[11] S. Baron, ?Weyl-type tests for absolute summability of orthogonal series,? Uch. Zap. Tartusk. Univ.,150, 165?181 (1964).
[12] S. Baron, ?Local property of absolute summability of Fourier series,? Uch. Zap. Tartusk. Univ.,177, 106?120 (1965(1966)).
[13] S. Baron, Introduction to Theory of Summability of Series [in Russian], Izd. Tartusk. Univ., Tartu (1966).
[14] S. Baron, ?Summability factor theorems for A? methods,? Uch. Zap. Tartusk. Univ.,253, 165?178 (1970).
[15] S. Baron, ?Local property of absolute summability of Fourier series and. of adjoint series,? Uch. Zap. Tartusk. Univ.,253, 212?228 (1970).
[16] T. P. Bezditnii, ?Probability-theoretic interpretation of certain generalized methods of summation of series,? Visnik Kievsk. Univ., Ser. Matem. Mekh., No. 11, 138?142 (1969).
[17] V. A. Bolgov, ?Tauberian constants for methods of summations determined by functions,? in: Articles on the Constructive Theory of Functions and Extremum Problems of Functional Analysis [in Russian], Kalinin (1972), pp. 53?57.
[18] V. A. Bolgov, ?A Tauberian theorem,? in: Articles on the Constructive Theory of Functions and Extremum Problems of Functional Analysis [in Russian], Kalinin (1972), pp. 57?59.
[19] É. G. Budanitskii, ?Mercer-type theorems for arbitrary regular methods of summation,? Vestn. Mosk. Univ., Matem. i Mekh., No. 6, 73?77 (1969).
[20] É. G. Budanitskii, ?Summation of sequences using linear methods to infinity,? Izv. Vyssh. Ucheb. Zaved. Matem., No. 10, 21?30 (1970).
[21] N. Veske, ?Summability by Cesàro method of a formal product of series,? Uch. Zap. Tartusk. Univ.,281, 118?128 (1971).
[22] F. Vikhmann, ?Extension of Peyerimhoff method to the case of generalized summability factors,? Uch. Zap. Tartusk. Univ.,129, 170?193 (1962).
[23] F. Vikhmann, ?Generalized summability factors for the method of suspended Riesz means,? Uch. Zap. Tartusk. Univ.,129, 199?224 (1962).
[24] V. F. Vlasenko, ?Summation theorem for dilute series,? Matem. Zametki,2, No. 3, 257?266 (1967).
[25] V. F. Vlasenko, ?Summation of dilute series by regular positive matrix methods,? Ukrainsk. Matem. Zh.,19, No. 3, 11?20 (1967).
[26] V. F. Vlasenko, ?Summation of dilute series (negative results),? Ukrainsk. Matem. Zh.,20, No. 6, 830?832 (1968).
[27] L. P. Vlasov, ?Methods of summation and best approximations,? Matem. Zametki,4, No. 1, 11?20 (1968).
[28] V. I. Volkov, ?Certain regular methods of summation of series,? Tr. Tsentr. Zonal. Ob?edin. Matem. Kafedr. Kalinin. Gos. Ped. Inst.,1, 38?75 (1970).
[29] I. I. Volkov, ?Linear transformations of directly divergent sequences,? Dokl. Akad. Nauk SSSR,165, No. 4, 742?744 (1965).
[30] I. I. Volkov, ?Consistency of two methods of summation,? Matem. Zametki,1, No. 3, 283?290 (1967). · Zbl 0162.08102
[31] I. I. Volkov, ?Summation of unbounded sequences,? Izv. Vyssh. Ucheb. Zaved. Matem., No. 2, 20?25 (1967).
[32] I. I. Volkov, ?Linear transformations of unbounded complex sequences,? Dokl. Akad. Nauk SSSS,173, No. 3, 495?498 (1967).
[33] I. I. Volkov, ?Linear transformations of unbounded complex sequences,? Izv. Vyssh. Ucheb. Zaved. Matem. No. 1, 24?35 (1970).
[34] I. I. Volkov, ?Relation between summability and absolute summability by the Cesàro method of complex order,? Matem. Zametki,9, No. 1, 13?18 (1971).
[35] S. P. Geisberg, ?Analogs of the Mazur-Orlicz theorems for absolute summation,? Uch. Zap. Tartusk. Univ.,129, 297?307 (1962).
[36] S. P. Geisberg, ?Absolute summation of gap series using Riemann methods,? Izv. Vyssh. Ucheb. Zaved. Matem. No. 4, 39?46 (1964).
[37] V. É. Goikhman, ?Generalization of the concept of slow oscillation and its relation to Tauberian theorems,? Ural University, Sverdlovsk (1973) (deposited in VINITI, Nov. 1, 1973, No. 7222?73).
[38] V. É. Goikhman, ?Certain structural questions for summability fields of regular matrices,? Ural University, Sverdlovsk (1973) (deposited in VINITI, Nov. 1, 1973, No. 7221?73).
[39] B. I. Golubov, ?Summation of sequences,? Izv. Vyssh. Ucheb. Zaved. Matem., No. 4, 47?55 (1964).
[40] B. I. Golubov, ?Summation of sequences,? in: Investigations of the Modern Problem of the Constructive Theory of Functions [in Russian], Akad. Nauk AzerbSSR, Baku (1965), pp. 351?357.
[41] Yu. G. Gorst, ?Extension of the Mazur-Orlicz theorem to semicontinuous and integral methods of summation,? Bull. Acad. Polon. Sci. Sér. Sci. Math., Astron. Phys.,11, No. 12, 745?749 (1963).
[42] Yu. G. Gorst, ?A weak method of summation, in: Proc. Third Siberian Conference on Mathematics and Mechanics [in Russian], Tomsk. Univ. Tomsk (1964), pp. 55?56.
[43] Yu. G. Gorst, ?Certain weak methods of summation,? Stud. Math.,28, No. 2, 155?168 (1967).
[44] Yu. G. Gorst and M. V. Elin, ?Certain essential differences between matrix and semicontinuous methods of summation of sequences,? Bull. Acad. Polon. Sci. Sér. Sci. Math., Astron. Phys.,11, No. 1, 9?11 (1963). · Zbl 0118.28702
[45] Yu. G. Gorst and M. V. Elin, ?A property of almost-convergent sequences,? Sibirsk. Matem. Zh.,5, No. 3, 712?716 (1964).
[46] L. V. Grepachevskaya, ?Summation of arbitrary sequences using Riesz methods,? Matem. Zametki,4, No. 5, 541?550 (1968). · Zbl 0172.33601
[47] N. A. Davydov, ?(c)-property of Cesàro and Abel-Poisson methods and Tauberian theorems,? Matem. Sb., No. 2, 185?206 (1963).
[48] N. A. Davydov, ?Sufficiency conditions for summability of a series using the (? n)-method,? Usp. Matem. Nauk,19, No. 5, 115?118 (1964).
[49] N. A. Davydov, ?Generalization of the Mercer theorem,? Usp. Matem. Nauk,20, No. 6, 73?77 (1965).
[50] N. A. Davydov, ?Noneffectiveness of regular matrices,? Usp. Matem. Nauk,20, No. 6, 78?80 (1965).
[51] N. A. Davydov, ?Generalization of the Knopp-Belinfante Mercerian theorem,? Teor. Funkts. Funkts. Analiz i Ikh Prilozh. Resp. Mezhved. Temat. Nauch. Sb.,3, 86?89 (1966).
[52] N. A. Davydov, ?Inclusion and equivalence of Kojima methods of summation of series,? Ukrainsk. Matem. Zh.,19, No. 4, 29?47 (1967).
[53] N. A. Davydov, ?Inclusion and equivalence of Toeplitz methods of summation of series,? Ukrainsk. Matem. Zh.,20, No. 4, 460?471 (1968).
[54] N. A. Davydov, ?Boundedness conditions for means specified by matrices,? Teor. Funkts., Funkts. Analiz i Ikh Prilozh. Resp. Mezhved. Temat. Nauch. Sb.,10, 127?131 (1970).
[55] N. A. Davydov, ?A property of inclusion of methods of summation that can be determined by normal matrices,? Ukrainsk. Matem. Zh.,22, No. 5, 685?690 (1970).
[56] N. A. Davydov, ?Accuracy of the Mazur-Orlicz theorem,? Matem. Zametki,11, No. 4, 431?436 (1972). · Zbl 0244.40004
[57] N. A. Davydov, ?Summation of bounded sequences by regular positive matrices,? Matem. Zametki,13, No. 2, 179?188 (1973). · Zbl 0262.40004
[58] N. A. Davydov, ?C?-property of summation of series and Tauberian-type theorems,? Teor. Funkts., Funkts. Analiz i Ikh Prilozh. Resp. Mezhved. Temat. Nauch. Sb.,17, 14?23 (1973).
[59] L. V. Zhizhiashvili, ?Certain questions from the theory of simple and multiple trigonometric and orthogonal series,? Usp. Matem. Nauk,28, No. 2, 65?119 (1973).
[60] I. I. Zhogin, ?(L,?)-methods of summation,? in: Proc. Third Sibirian Conference on Mathematics and Mechanics [in Russian], Tomsk. Univ., Tomsk (1964), pp. 36?37.
[61] I. I. Zhogin, ?(L,?)-summation,? Uch. Zap. Sverdlovsk. Gos. Ped. Inst.,54, 60?82 (1967).
[62] I. I. Zhogin, ?Tauberian theorem for Lambert series,? Uch. Zap. Sverdlovsk. Gos. Ped. Inst.,78, 40?44 (1969).
[63] I. I. Zhogin, ?Relation between Cesáro and Lambert methods of summation,? Matem. Zametki,5, No. 5, 521?526 (1965).
[64] I. I. Zhogin and V. D. Zhavoronkov, ?Theory of [L,?]-summation,? Uch. Zap. Sverdlovsk. Gos. Ped. Inst.,124, 180?183 (1970).
[65] R. B. Israpilov, ?A generalization of the exponential method of Borel summation,? Vestn. Mosk. Univ., Matem. Mekh., No. 2, 9?14 (1969).
[66] G. Kangro, ?Studies in summability theory,? Izv. Akad. Nauk ÉstSSR, Fiz. Matem.,16, No. 3, 255?266 (1967).
[67] G. Kangro, ?Independence of Tauberian conditions from summability order,? Uch. Zap. Tartusk. Univ.,220, 122?130 (1968).
[68] G. Kangro, ?Bohr-Hardy-type summability factors for given rate. 1,? Izv. Akad. Nauk ÉstSSR, Fiz. Matem.,18, No. 2, 137?146 (1969).
[69] G. Kangro, ?Bohr-Hardy-type summability factors for a given rate. II,? Izv. Akad. Nauk ÉstSSR, Fiz. Matem.,18, No. 4, 387?395 (1969).
[70] G. Kangro, ?Weakening Tauberian conditions,? Izv. Akad. Nauk ÉstSSR, Fiz. Matem.,19, No. 1, 24?33 (1970).
[71] G. Kangro, ??-perfection of methods of summation and its applications. I,? Izv. Akad. Nauk ÉstSSR, Fiz. Matem.,20, No. 2, 111?120 (1971).
[72] G. Kangro, ??-perfection of methods of summation and its applications. II,? Izv. Akad. Nauk ÉstSSR, Fiz. Matem.,20, No. 4, 375?385 (1971).
[73] G. Kangro, ?Summability factors for ?-bounded series by Riesz and Cesàro methods,? Uch. Zap. Tartusk. Univ.,277, 136?154 (1971).
[74] G. Kangro, ?Tauberian theorem with a remainder term for the Riesz method,? Uch. Zap. Tartusk. Univ.,277, 155?160 (1971).
[75] G. Kangro, ?Tauberian theorem with a remainder term for the Riesz method. II,? Uch. Zap. Tartusk. Univ.,305, 156?166 (1972).
[76] G. Kangro and Yu. Lamp, ?A class of matrix methods,? Uch. Zap. Tartusk. Univ.,177, 80?91 (1965).
[77] T. Karagaeva and M. Tsankova, ?Tauberian theorem following Kronecker for summation by means of Bessel polynomial,? Godishn. Vissh. Tekhn. Ucheb. Zaved. Matem.,4, No. 3, 39?45 (1967(1971)).
[78] B. L. Kaufman, ?Tauberian-type theorems for logarithmic methods of summation,? Izv. Vyssh. Ucheb. Zaved. Matematika, No. 1, 57?62 (1967).
[79] B. L. Kaufman, ?Several theorems related to the Bernstein (Bh, 2) method of summation,? Uch. Zap. Orenburg. Gos. Ped. Inst.,21, 71?80 (1967).
[80] É. Kol’k, ?Factors of absolute generalized Cesàro-summability,? Uch. Zap. Tartusk. Univ.,220, 136?144 (1968).
[81] É. Kol’k, ?Reflexivity and summability in Fréchet spaces,? Uch. Zap. Tartusk. Univ.,305, 127?130 (1972).
[82] R. Cooke, Infinite Matrices and Sequence Spaces [Russian translation], Fizmatgiz, Moscow (1960).
[83] M. G. Lazich, ?Perfectness of permanent triangular sequences,? Matem. Vesn.,8, 271?280 (1971).
[84] M. G. Lazich, ?Functional transformations of sequences. I,? Publs. Inst. Math., No. 14, 83?95 (1972).
[85] Yu. V. Lamp, ?Transformations of generalized sequences,? Uch. Zap. Tartusk. Univ.,220, 67?84 (1968).
[86] Yu. V. Lamp, ??-fields of transformations of generalized sequences,? Uch. Zap. Tartusk. Univ.,220, 85?103 (1968).
[87] Yu. V. Lamp, ?Matrix transformations of generalized sequences,? Tr. Tallin. Politekh. Inst.,A, No. 313, 73?80 (1971).
[88] Yu. V. Lamp, ?Application of ordering in the theory of matrix transformation of generalized sequences,? Tr. Tallin. Politekh. Inst.,A, No. 318, 81?86 (1971).
[89] L. Loone, ?Cores of an element of separable locally convex space,? Uch. Zap. Tartusk. Univ.,277, 125?135 (1971). · Zbl 0318.46003
[90] L. Loone, ?Core-bounded elements in a locally convex space,? Uch. Zap. Tartusk. Univ.,281, 86?90 (1971). · Zbl 0318.46003
[91] L. Loone, ?Knopp-core and almost-convergence core in the space m,? Uch. Zap. Tartusk. Univ.,305, 131?144 (1972).
[92] A. A. Melentsov, ?Commutative semigroups in a space of lower triangular matrices and an analytic continuation of Taylor series,? Matem. Zap. Ural’sk. Univ.,5, No. 4, 62?75 (1966).
[93] A. A. Melentsov, ?Remarks on the fundamentals of linear analysis in effectivity fields,? Matem. Zap. Ural’sk. Univ.,7, No. 2, 98?102 (1969).
[94] A. A. Melentsov, ?Consistence of operators continuous relative to Tikhonov topology,? Matem. Zap. Ural’sk. Univ.,7, No. 2, 130?137 (1969).
[95] A. A. Melentsov, ?Strengthening fundamental theorems of linear analysis in effectivity fields,? Matem. Zap. Ural’sk. Univ.,7, No. 4, 133?134 (1970).
[96] A. A. Melentsov, ?Correction to ?Consistency of operators continuous relative to Tikhonov topology?,? Matem. Zap. Ural’sk. Univ.,8, No. 2, 165?166 (1972).
[97] A. A. Melentsov and S. M. Bakusova, ?Topology of effectivity fields of operators continuous relative to Tikhonov system of neighborhoods,? Matem. Zap. Ural’sk. Univ.,6, No. 4, 132?148 (1968).
[98] Kh. Kh. Melikov, ?A class of methods of summation of divergent series,? Uch. Zap. Sev.-Oset. Gos. Ped. Inst.,26, No. 2, 19?27 (1964).
[99] Kh. Kh. Melikov, ?A class of methods of summation of divergent series,? Uch. Zap. Kabard.-Balkar. Univ., Ser. Fiz.-Matem.,24, 183?188 (1965).
[100] Kh. Kh. Melikov, ?Tauberian-type theorems for C?,?,?-methods of summation,? Uch. Zap. Sev.-Oset. Gos. Ped. Inst.,27, No. 2, 28?34 (1966).
[101] V. I. Mel’nik, ?Summation of series using Cesàro and Abel-Poisson methods,? Matem. Sb.,67, No. 4, 535?540 (1965).
[102] V. I. Mel’nik, ?Tauberian theorem for ?large exponents? for the Borel method,? Matem. Sb.,68, No. 1, 17?25 (1965).
[103] V. I. Mel’nik, ?(B)-property of Borel methods of summation of series and Tauberian-type theorems,? Ukrainsk. Matem. Zh.,17, No. 1, 64?76 (1965). · Zbl 0166.06701 · doi:10.1007/BF02526584
[104] V. I. Mel’nik, ?Tauberian theorem for Borel method of summation,? Izv. Vyssh. Ucheb. Zaved. Matem., No. 11, 85?92 (1971).
[105] G. A. Mikhalin, ?A property of inclusion of methods of summation determined by matrices with finite rows,? Teor. Funkts., Funkts. Analiz i Ikh Prilozh. Resp. Mezhved. Temat. Nauch. Sb.,18, 137?144 (1973).
[106] É. B. Muraev, ?Application of summation theory of divergent series to questions in approximation theory,? Usp. Matem. Nauk,19, No. 2, 211 (1964).
[107] É. B. Muraev, ?A Perron theorem for summation of series,? Uch. Zap. Sverdlovsk. Gos. Ped. Inst.,54, 128?131 (1967).
[108] I. Nakamura, ?Certain special sets of convergence. New proof of the fundamental summability theorem using the Cesàro method,? Rept. Tokyo Univ. Fish., No. 3, 1?3 (1968).
[109] I. Nakamura, ?A summability theorem using the Cesàro method. II,? Rept. Tokyo Univ. Fish., No. 4, 41?49 (1969).
[110] I. Nakamura, ?Summability theorem using the Cesàro method,? Rept. Tokyo Univ. Fish., No. 4, 51?55 (1969).
[111] I. Nakamura, ?Summability theorem using the Cesàro method. I,? Rept. Tokyo Univ. Fish., No. 5, 1?6 (1970).
[112] I. Nakamura, ?Certain special convergence factors. II. Proof of fundamental summability theorem using the Cesàro method,? Rept. Tokyo Univ. Fish., No. 5, 7?13 (1970).
[113] I. Nakamura, ?Certain special convergence factors. III. Proof of fundamental summability theorem using the Cesàro method,? Rept. Tokyo Univ. Fish., No. 5, 15?20 (1970).
[114] N. S. Novikova, ?Tauberian-type theorems for summation of series using Cesaro methods of negative order,? in: Materials of the Inter-University Conference of Young Mathematicians and Scientists [in Russian], Khar’kov (1966), pp. 92?96.
[115] N. S. Novikova, ?Tauberian-type theorems for logarithmic means,? in: Materials of the Inter-University Conference of Young Mathematicians and Scientists [in Russian], Khar’kov (1966), pp. 97?101.
[116] N. S. Novikova, ?Interrelations between certain methods of summation of series,? in: Investigations in Modern Problems of Summation and Approximation of Functions and Their Applications. Part II [in Russian], Dnepropetrovsk (1969), pp. 49?52.
[117] N. S. Novikova, ?Tauberian-type theorems for integral-type transformations and their applications,? Izv. Vyssh. Ucheb. Zaved. Matem. No. 12, 65?70 (1969).
[118] N. S. Novikova and N. I. Udalaya, ?Absolute summability of series using integral methods,? in: Investigations of Modern Problems of Summation and Approximation of Functions and Their Applications [in Russian], Dnepropetrovsk (1972), pp. 92?95.
[119] I. I. Ogievetskii, ?Summation theory of bounded sequences using regular matrices,? Usp. Matem. Nauk,18, No. 5, 221?223 (1963).
[120] I. I. Ogievetskii, ?Certain Tauberian theorems,? Usp. Matem. Nauk,19, No. 4, 189?196 (1964).
[121] I. I. Ogievetskii, ?Tauberian theorems for methods of summation related to an analytic continuation,? Usp. Matem. Nauk,19, No. 6, 231?233 (1964).
[122] I. I. Ogievetskii, ?Summation theory of series using the Borel method. II,? Izv. Vyssh. Ucheb. Zaved. Matem., No. 3, 100?110 (1964).
[123] I. I. Ogievetskii, ?Inclusions between regular methods,? Uch. Zap. Kazansk. Univ.,124, No. 6, 241?265 (1964).
[124] I. I. Ogievetskii, ?Inclusions between regular matrices,? Bull. Acad. Polon. Sci. Sér. Sci. Math., Astron. Phys.,13, No. 7, 447?454 (1965).
[125] I. I. Ogievetskii, ?Tauberian theorems for certain methods of summation,? in: Investigations in Modern Problems of the Constructive Theory of Functions [in Russian], Akad. Nauk AzerbSSR, Baku, (1965), pp. 377?382.
[126] I. I. Ogievetskii, ?Summation of unbounded sequences using linear regular methods,? Dokl. Akad. Nauk SSSR,167, No. 5, 989?991 (1966).
[127] I. I. Ogievetskii, ?Effectivity regions of regular matrices,? Bull. Acad. Polon. Sci. Sér. Sci. Math., Astron. Phys.,16, No. 2, 103?106 (1968).
[128] M. F. Poluyanova, ?Summation of a product of two series using the Voronoi methods,? Matem. Sb.,68, No. 1, 128?147 (1965). · Zbl 0143.07701
[129] M. F. Poluyanova, ?Summability conditions for Cauchy product of numerical series,? Sibirsk. Matem. Zh.,8, No. 1, 56?69 (1967).
[130] M. F. Poluyanova, ?Summation of a product of two numerical series,? Sibirsk. Matem. Zh.,10, No. 3, 634?641 (1969).
[131] M. F. Poluyanova, ?Summation of products of two numerical series,? Tr. Mosk. Avtomob.-Dor. Inst.,48, 44?46 (1972).
[132] É. Reimers, ?New general methods of summation,? Uch. Zap. Tartusk. Univ.,129, 119?154 (1962).
[133] É. Reimers, ?Continuous methods of summation,? Uch. Zap. Tartusk. Univ.,206, 50?89 (1967).
[134] É. Reimers, ?Consistency of s-convergence,? Uch. Zap. Tartusk. Univ.,220, 131?135 (1968).
[135] É. Reimers, ?Representation of functions by numerical sequences,? Uch. Zap. Tartusk. Univ.,281, 129?139 (1971).
[136] D. Sabo, ?Permutations of summable numerical series,? Matem. Zametki,13, No. 1, 13?20 (1973).
[137] A. N. Safonov, ?Methods of C (+Pn) summation of series,? Uch. Zap. Yarosl. Gos. Ped. Inst.,60, 96?100 (1968).
[138] A. N. Safonov, ?A theorem of F. I. Kharshiladze,? Uch. Zap. Yarosl. Gos. Ped. Inst.,82, 73?75 (1971).
[139] G. P. Safronova, ?A method of summation of divergent series,? Vestn. Leningr. Univ.,13, 170?173 (1967).
[140] K. M. Slipenchuk, ?Certain general Tauberian-type theorems,? Dop. Akad. Nauk UkrSSR, No. 10, 1315?1318 (1960).
[141] K. M. Slipenchuk, ?Tauberian-type theorems for absolute summability,? Dop. Akad. Nauk UkrSSR, No. 11, 1405?1408 (1961).
[142] K. M. Slipenchuk, ?Some methods of summation series,? Dop. Akad. Nauk UkrSSR, No. 12, 1559?1562 (1963).
[143] K. M. Slipenchuk, ?Tauberian-type theorems for (C ? (?) ,?)-methods of summations of series,? Izv. Vyssh. Ucheb. Zaved. Matem., No. 3, 131?135 (1964).
[144] K. M. Slipenchuk, ?Tauberian-type theorems for certain methods of summation of series,? Izv. Vyssh. Ucheb. Zaved. Matem., No. 5, 100?103 (1964).
[145] K. M. Slipenchuk, ?Tauberian-type theorems for generalized Hölder methods of negative order,? Izv. Vyssh. Ucheb. Zaved. Matem., No. 1, 146?152 (1965).
[146] K. M. Slipenchuk, ?Summation of series using (C?,?)-methods,? Izv. Vyssh. Ucheb. Zaved. Matem., No. 2, 166?170 (1965).
[147] K. M. Slipenchuk, ?Absolute summability of series using Cesàro methods of negative order,? Izv. Vyssh. Ucheb. Zaved. Matem., No. 5, 128?131 (1965).
[148] K. M. Slipenchuk, ?Tauberian-type theorems for absolute summability using Abel methods,? Izv. Vyssh. Ucheb. Zaved. Matem., No. 6, 135?139 (1965).
[149] K. M. Slipenchuk, ?Tauberian-type theorem for summation of series,? Dop. Akad. Nauk UkrSSR, No. 1, 32?35 (1966).
[150] K. M. Slipenchuk, ?Generalization of Hölder means and Tauberian-type theorems for these methods,? Ukrainsk. Matem. Zh.,18, No. 1, 129?134 (1966). · Zbl 0164.06803 · doi:10.1007/BF02537725
[151] K. M. Slipenchuk, ?Tauberian-type theorems for absolute summability using Borel methods,? Dop. Akad. Nauk UkrSSR, No. 6, 722?725 (1966).
[152] K. M. Slipenchuk, ?Tauberian-type theorems for absolute summability,? in: Investigations in Modern Problems of Summation and Approximation of Functions and Their Applications, Part I [in Russian], Dnepropetrovsk (1967), pp. 90?93.
[153] K. M. Slipenchuk, ?A general Tauberian-type theorem and its application to (I*, pn, ?)-methods,? Izv. Vyssh. Ucheb. Zaved. Matem., No. 12, 58?64 (1967).
[154] K. M. Slipenchuk, ?Tauberian-type theorems for matrix methods of summation of series and their applications,? Izv. Vyssh. Ucheb. Zaved. Matem., No. 1, 92?97 (1968).
[155] K. M. Slipenchuk, ?A general Tauberian-type theorem for absolute summability of series and its application to the Borel method,? Izv. Vyssh. Ucheb. Zaved. Matem., No. 3, 61?65 (1969).
[156] K. M. Slipenchuk and N. I. Udalaya, ?Absolute summability of series by matrix methods. I,? Izv. Vyssh. Ucheb. Zaved. Matem., No. 6, 65?73 (1974).
[157] K. M. Slipenchuk and N. I. Udalaya, ?Absolute summability of series by matrix methods. II,? Izv. Vyssh. Ucheb. Zaved. Matem., No. 7, 72?82 (1974).
[158] G. A. Smirnov, ?Comparison of certain methods of summation of series,? Uch. Zap. Kalininsk. Gos. Ped. Inst.,29, 127?134 (1963).
[159] V. P. Stepin, ?(L,?)-method of summation,? Mat. Zap. Ural’sk. Inst.,6, No. 2, 119?126 (1968).
[160] V. P. Stepin, ?Certain theorems on (L,?)-method of summation in matrix presentation,? Matem. Zap. Ural’sk. Inst.,6, No. 2, 127?132 (1968).
[161] V. P. Stepin, ?Generalization of certain Tauberian theorems for the Abel method to the (L,?)-method,? Uch. Zap. Sverdlovsk. Gos. Ped. Inst.,78, 77?80 (1969).
[162] V. P. Stepin, ?Schmidt Tauberian theorem of the (L,?)-method of summation,? in: Materials of the 27th Inter-University Scientific Conference of the Department of Mathematics of Pedagogical Institutes of the Ural Zone [in Russian] (1969), pp. 125?127.
[163] M. A. Subkhankulov, ?Remainder term in the Hardy-Littlewood-Carleman Tauberian theorem,? Izv. Akad. Nauk SSSR, Ser. Matem.,25, No. 6, 925?934 (1961).
[164] M. A. Subkhankulov, ?A Littlewood theorem,? Izv. Akad. Nauk UzSSR, Ser. Fiz.-Matem. Nauk, No. 1, 22?30 (1964).
[165] M. A. Subkhankulov and F. I. Ai, ?Generalization and refinement of the Valiron theorem,? Izv. Akad. Nauk TadzhSSR, Otd. Fiz.-Tekhn. i Khim. Nauk, No. 1 (14), 7?16 (1964).
[166] M. A. Subkhankulov and F. I. Ai, ?M. V. Keldysh Tauberian theorem,? Dokl. Akad. Nauk SSSR,185, No. 1, 47?50 (1969).
[167] T. Syrmus, ?Certain generalizations of the Mercer theorem,? Uch. Zap. Tartusk. Univ.,102, 169?184 (1961).
[168] T. Syrmus, ?Generalized Mercer theorem,? Izv. Akad. Nauk ÉstSSR, Ser. Fiz.-Matem. i Tekhn. Nauk,11, No. 2, 99?106 (1962).
[169] T. Syrmus, ?Tauberian-type theorems related to Yakimovski methods,? Uch. Zap. Tartusk. Univ.,177, 67?79 (1965).
[170] T. Syrmus, ?An asymptotic problem,? Uch. Zap. Tartusk. Univ.,177, 125?133 (1965).
[171] T. Syrmus, ?Absolute summability of simple and dual sequences by Hausdorff methods,? Uch. Zap. Tartusk. Univ.,206, 122?134 (1967).
[172] T. Syrmus, ?Tauberian-type theorems for different types of summability,? Uch. Zap. Tartusk. Univ.,281, 103?117 (1971).
[173] T. Syrmus, ?Certain generalized Tauberian theorems,? Uch. Zap. Tartusk. Univ.,305, 167?178 (1972).
[174] I. Tammeraid, ?Tauberian-type theorems with a remainder term,? Tr. Tallin. Politekhn. Inst.,A, No. 312, 27?38 (1971). · Zbl 0504.40005
[175] I. Tammeraid, ?Approximation of functions and Abel Tauberian-type theorems with a remainder term,? Tr. Tallin. Politekhn. Inst.,A, No. 312, 39?53 (1971).
[176] I. Tammeraid, ?Tauberian-type theorems with a remainder term for Cesàro and Hölder methods of summation,? Uch. Zap. Tartusk. Univ.,277, 161?170 (1971).
[177] I. Tammeraid, ?Tauberian theorems with a remainder term for Euler-Knopp method of summation,? Uch. Zap. Tartusk. Univ.,277, 171?182 (1971).
[178] L. F. Targonskii, ?(c)-property of polynomial positive Voronoi-methods and Tauberian-type theorems,? Ukrainsk. Matem. Zh.,22, No. 5, 625?636 (1970).
[179] É. Tiit, ?Domain of sums in linear normed spaces,? Uch. Zap. Tartusk. Univ.,129, 308?322 (1962).
[180] É. Tiit, ?Certain new A-domains of sums of summable series,? Uch. Zap. Tartusk. Univ.,129, 338?356 (1962).
[181] É. Tiit, ?Example of a series having a discrete domain of sums,? Uch. Zap. Tartusk. Univ.,253, 148?164 (1970).
[182] Kh. Tyurnpu, ?Certain types of summability factors for second-order Riesz method,? Uch. Zap. Tartusk. Univ.,129, 253?263 (1962).
[183] Kh. Tyurnpu, ?Summability factors for Riesz methods,? Uch. Zap. Tartusk. Univ.,206, 90?105 (1967).
[184] N. I. Udalaya, ?A general Tauberian-type theorem for matrix methods of summation of series,? in: Studies of Students of the Dnepropetrovsk Institute of Mechanics and Mathematics [in Russian], Dnepropetrovsk (1970), pp. 204?208.
[185] N. I. Udalaya, ?Integral methods of summation of series and Tauberian-type theorems for these methods,? in: Mathematics and Mechanics [in Russian], Dnepropetrovsk (1972), pp. 79?88.
[186] N. I. Udalaya, ?Tauberian-type theorems for integral transformations and their applications,? in: Mathematics and Mechanics [in Russian], Dnepropetrovsk (1972), pp. 88?95.
[187] N. I. Udalaya, ?Strong summability of series by matrix methods,? in: Investigations in Modern Problems of Summation and Approximation of Functions and Their Applications [in Russian], Dnepropetrovsk (1972), pp. 108?115.
[188] N. I. Udalaya, ?Inclusion theorems for matrix methods of summation of series,? in: Investigations in Modern Problems of Summation and Approximation of Functions and Their Applications [in Russian], Dnepropetrovsk (1972), pp. 115?124.
[189] G. A. Fomin, ?Summation of alternating series,? Uch. Zap. Kaluzhsk. Gos. Ped. Inst.,12, 89?92 (1963).
[190] G. Hardy, Divergent Series [Russian translation], Moscow (1951).
[191] Yu. I. Khudak, ?Two inclusion theorems for a method of generalized summation of series, T{?k},? Dokl. Akad. Nauk SSSR,202, No. 6, 1284?1287 (1972).
[192] Z. A. Chanturiya, ?Problem of summability of weakly convergent sequences,? Tr. Tbilis. Univ.,102, 211?219 (1964).
[193] V. G. Chelidze, ??-summability of series,? Soobshch. Akad. Nauk GruzSSR,71, No. 1, 45?48 (1973).
[194] V. M. Shcherbakova, ?Certain properties of (K,?,f)-methods of summation of numerical series,? Sb. Tr. Mosk. Tekhnol. Inst.,8, 93?102 (1964).
[195] V. M. Shcherbakova, ?Certain properties of (A,a k (n) , (K, b k (n) , d k (n) ), and (K,?,f) methods of summation of numerical series,? Matem. Sb.,69, No. 2, 208?221 (1966). · Zbl 0144.31201
[196] V. M. Shcherbakova, ?Inclusion and equivalence of methods of summation of numerical series,? Sb. Tr. Mosk. Tekhnol. Inst., No. 18, 110?118 (1969).
[197] I. A.Ézrokhi, ?Application of functional analysis to certain questions of generalized summation,? Tr. Obshcheteor. Kafedr. Ukr. S.-Kh. Akad. Kiev, 3?16 (1963).
[198] Kh. Éspenberg, ?Summability factors in sequences for Euler-Knopp methods,? Sb. Nauchn. Tr. Ést. S.-Kh. Akad., No. 31, 73?81 (1963).
[199] Kh. Éspenberg, ?Power convergence factors of the first kind for the Euler-Knopp method,? Sb. Nauchn. Tr. Ést. S.-Kh. Akad., No. 42, 92?102 (1965).
[200] Kh. Éspenberg, ?Power summability factors of the first and second kind for the Euler-Knopp method,? Sb. Nauchn. Tr. Ést. S.-Kh. Akad., No. 53, 51?66 (1969).
[201] É. Yurimyaé, ?Certain problems of generalized matrix methods of summation. Coregular and conull methods,? Izv. Akad. Nauk ÉstSSR, Ser. Tekhn. i Fiz.-Matem. Nauk,8, No. 2, 115?121 (1959).
[202] É. Yurimyae’, ?Certain inclusion and consistency problems of methods of absolute summation,? Uch. Zap. Tartusk. Univ.,150, 132?143 (1964).
[203] É. Yurimyaé, ?Remarks on conull methods of summation,? Uch. Zap. Tartusk. Univ.,150, 144?153 (1964).
[204] É. Yurimyaé, ?Topological properties of conull methods of summation,? Uch. Zap. Tartusk. Univ.,177, 43?61 (1965).
[205] É. Yurimyaé, ?Notes on coregular generalized matrix methods of summation,? Uch. Zap. Tartusk. Univ.,177, 62?66 (1965).
[206] É. Yurimyaé, ?Generalization of the Mazur-Orlicz theorem,? Uch. Zap. Tartusk. Univ.,206, 44?49 (1967).
[207] É. Yurimyaé, ?Topological properties of conull methods of summation. II,? Uch. Zap., Tartusk. Univ.,253, 145?147 (1970).
[208] É. Yurimyaé, ?Sets of perfection for methods preserving convergence,? Uch. Zap. Tartusk. Univ.,277, 115?124 (1971).
[209] R. P. Agnew, ?Borel transforms of Tauberian series,? Math. Z.,67, No. 1, 51?62 (1957). · Zbl 0077.06502 · doi:10.1007/BF01258842
[210] Z. U. Ahmad, ?Absolute summability factors of infinite series by Rieszian means,? Rend. Circolo Mat. Palermo,11, No. 1, 91?104 (1962). · Zbl 0109.28604 · doi:10.1007/BF02849428
[211] Z. U. Ahmad, ?Summability factors for generalized absolute Riesz summability, I,? Ann. Scuola Norm. Super. Pisa. Sci. Fis. e Mat.,24, No. 4, 677?687 (1970(1971)). · Zbl 0205.36203
[212] Z. U. Ahmad, ?On absolute summability methods based on power series. I,? Rend. Mat.,5, No. 3, 541?549 (1972). · Zbl 0243.40013
[213] K. Anjaneyulu, ?Tauberian constants and quasi-Hausdorff series-to-series transformations,? J. Indian Math. Soc.,28, No. 2, 69?82 (1964). · Zbl 0135.26303
[214] K. Anjaneyulu, ?Tauberian constants for Laurent series continuation matrix transforms,? Ann. Univ. Sci. Budapest. Sec. Math.,7, No. 157?168 (1964). · Zbl 0135.26402
[215] K. Anjaneyulu, ?Tauberian constants for F(c,?)-transforms,? Math. Z.,92, No. 3, 194?200 (1966). · Zbl 0135.26401 · doi:10.1007/BF01111184
[216] J. Antoni, ?On the summability of subsequences,? Mat. Cas.,21, No. 2, 160?166 (1971). · Zbl 0223.40003
[217] R. E. Atalla, ?On the consistency theorem in matrix summability,? Proc. Amer. Math. Soc.,35, No. 2, 416?422 (1972). · Zbl 0256.40005 · doi:10.1090/S0002-9939-1972-0308640-8
[218] R. E. Atalla, ?Generalized averaging operators and matrix summability,? Proc. Amer. Math. Soc.,38, No. 2, 272?278 (1973). · Zbl 0264.47034 · doi:10.1090/S0002-9939-1973-0313869-X
[219] A. Baernstein, ?On reflexivity and summability,? Stud. Math. (PRL) 42, No. 1, 91?94 (1972). · Zbl 0206.42104
[220] M. Bajraktarevi?, ?Certain remarks on summability methods associated with Stirling polynomials,? Glasnik Mat.-Fiz., i Astron.,17, Nos. 3?4, 183?187 (1962(1963)).
[221] M. Bajraktarevi?, ?On a set of summability methods with two parameters depending on a sequence,? Radovi. Nau?. Dru?t SR BiH,25, 203?224 (1964).
[222] J. W. Baker and G. M. Petersen, ?Inclusion of sets of regular summability matrices,? Proc. Cambridge Phil. Soc.,60, No. 4, 705?712 (1964). · Zbl 0134.28103 · doi:10.1017/S0305004100038184
[223] J. W. Baker and G. M. Petersen, ?Inclusion of sets of regular summability matrices. II,? Proc. Cambridge Phil. Soc.,61, No. 2, 381?394 (1965). · Zbl 0151.05702 · doi:10.1017/S0305004100003960
[224] J. W. Baker and G. M. Petersen, ?Inclusion of sets of regular summability matrices, III,? Proc. Cambridge Phil. Soc.,62, No. 3, 389?394 (1966). · Zbl 0146.28902 · doi:10.1017/S0305004100039979
[225] J. W. Baker and G. M. Petersen, ?Extremal points in summability theory,? Compos. Math.,17, No. 2, 190?206 (1966). · Zbl 0144.05301
[226] J. W. Baker and G. M. Petersen, ?Summability fields which span the bounded sequences,? Proc. Cambridge Phil. Soc.,63, No. 1, 99?106 (1967). · Zbl 0143.28302 · doi:10.1017/S0305004100040937
[227] L. W. Baric, ?The chi-function in generalized summability,? Stud. Math. (PRL),39, No. 2, 165?180 (1971).
[228] M. Barsky, ?On extending the theory of Cesàro summability,? Ann. Pol. Math.,23, No. 3, 179?200 (1970). · Zbl 0203.36805
[229] M. Barsky, ?Repeated convergence and fractional differences,? Ann. Pol. Math.,26, No. 3, 221?237 (1972). · Zbl 0223.40009
[230] S. K. Basu, ?A note on total equivalence of triangular matrices,? Rend. Circolo Mat. Palermo,16, No. 1, 81?86 (1967). · Zbl 0169.39001 · doi:10.1007/BF02844087
[231] S. K. Basu, ?On comparison of the total strength of some Hausdorff methods. II,? Math. Z.,103, No. 5, 358?362 (1968). · Zbl 0153.08902 · doi:10.1007/BF01145966
[232] S. K. Basu, ?On comparison of the total strength of some Hausdorff methods. III,? Math. Z.,106, No. 3, 181?182 (1968). · Zbl 0159.08201 · doi:10.1007/BF01110129
[233] H. Baumann, ?Umkehrsätze für das asymptotische Verhalten linearer Folgentransformationen,? Math. Z.,98, No. 2, 140?178 (1967). · Zbl 0153.09001 · doi:10.1007/BF01112723
[234] H. Baumann, ?Quotientensätze für Matrizen in der Limitierungstheorie,? Math. Z.,100, No. 2, 147?162 (1967). · Zbl 0148.29001 · doi:10.1007/BF01110792
[235] J. Bazinet and J. A. Siddiqi, ?On nonstrongly regular matrices,? Proc. Amer. Math. Soc.,34, No. 2, 428?432 (1972). · Zbl 0224.40005 · doi:10.1090/S0002-9939-1972-0294935-3
[236] W. Beekmann, ?Mercer-Sätze für abschnittsbeschränkte Matrixtransformationen,? Math. Z.,97, No. 2, 154?157 (1967). · Zbl 0144.05403 · doi:10.1007/BF01111356
[237] W. Beekmann, J. Boos, and K. Zeller, ?Der Teilraum P im Wirkfeld eines Limitierungsverfahrens ist invariant,? Math. Z.,130, No. 3, 287?290 (1973). · Zbl 0243.40007 · doi:10.1007/BF01246625
[238] G. Bennett, Applications of Functional Analysis to Summability Theory, Doctoral Dissertation, Univ. Cambridge (1970).
[239] G. Bennett, ?Distinguished subsets and summability invariants,? Stud. Math. (PRL),40, No. 3, 225?234 (1971). · Zbl 0223.40004
[240] G. Bennett, ?A representation theorem for summability domains,? Proc. London Math. Soc.,24, No. 2, 193?203 (1972). · Zbl 0229.40007 · doi:10.1112/plms/s3-24.2.193
[241] G. Bennett, ?The gliding humps technique for FK-spaces,? Trans. Amer. Math. Soc.,166 (Apr.), 285?292 (1972). · Zbl 0237.40012
[242] G. Bennett and N. J. Kalton, ?FK-spaces containing c0,? Duke Math. J.,39, No. 3, 561?582 (1972). · Zbl 0245.46011 · doi:10.1215/S0012-7094-72-03963-4
[243] G. Bennett and N. J. Kalton, ?Addendum to ?FK-spaces containing c0?,? Duke Math. J.,39, No. 4, 819?821 (1972). · Zbl 0254.46009 · doi:10.1215/S0012-7094-72-03990-7
[244] G. Bennett, J. J. Sember, and A. Wilansky, ?Sections of sequences in matrix domains,? Trans. N. Y. Acad. Sci.,34, No. 2, 107?112 (1972). · Zbl 0272.40011 · doi:10.1111/j.2164-0947.1972.tb02667.x
[245] G. Bennett and A. Wilansky, ?Two problems in summability,? Math. Z.,112, No. 3, 221 (1969). · Zbl 0175.34701 · doi:10.1007/BF01110222
[246] I. D. Berg, ?A Banach algebra criterion for Tauberian theorems,? Proc. Amer. Math. Soc.,15, No. 4, 648?652 (1964). · Zbl 0131.05701 · doi:10.1090/S0002-9939-1964-0165285-6
[247] I. D. Berg, ?Open sets of conservative matrices,? Proc. Amer. Math. Soc.,16, No. 4, 719?724 (1965). · Zbl 0139.08304 · doi:10.1090/S0002-9939-1965-0179514-7
[248] I. D. Berg, ?A note on convergence fields,? Can. J. Math.,18, No. 3, 635?638 (1966). · Zbl 0143.28401 · doi:10.4153/CJM-1966-063-8
[249] S. N. Bhatt, ?On the summability factors of infinite series,? Rend. Circolo Mat. Palermo,11, No. 2, 237?244 (1962). · Zbl 0118.28803 · doi:10.1007/BF02843958
[250] S. N. Bhatt, ?Tauberian theorems for absolute Nörlund summability,? Matem. Vesn.,1, No. 4, 333?334 (1964). · Zbl 0131.05801
[251] W. Biegert, Über Konstanten Tauberscher Art bei den Kreisverfahren der Limitierungstheorie, Diss. Dokt., Naturwiss. Tehn. Hochschule Stuttgart (1965).
[252] W. Biegert, ?Über Tauber-Konstanten beim Borel-Verfahren,? Math. Z.,92, No. 4, 331?339 (1966). · Zbl 0136.35602 · doi:10.1007/BF01112202
[253] W. Biegert, ?Tauber-Konstanten für verschiedene Tauber-Bedingungen bei den Kreisverfahren der Limitierungstheorie,? Israel J. Math.,4, No. 2, 97?112 (1966). · Zbl 0146.29003 · doi:10.1007/BF02937454
[254] W. Biegert, ?Tauber-Konstanten zu verschiedenen Tauber-Bedingungen beim Borel-Verfahren,? Indian J. Math.,9, No. 1, 25?26 (1967). · Zbl 0162.08201
[255] W. Biegert, ?Die Tauber-Bedingungen vom Schmidtschen Typ und Tauber-Konstanten bei den Kreisverfahren,? Arch. Math.,19, No. 1, 87?94 (1968). · Zbl 0155.39001 · doi:10.1007/BF01898806
[256] W. Biegert, ?Tauber-Konstanten zur Tauber-Bedingung vom Schmidtschen Typ bei den Kreisverfahren der Limitierungstheorie,? J. Reine und Angew. Math.,231, 1?9 (1968). · Zbl 0157.38101
[257] W. Biegert, ?Tauber-Konstanten bei den Hausdorff-Verfahren,? Tôhoku Math. J.,20, No. 4, 431?442 (1968). · Zbl 0174.35201 · doi:10.2748/tmj/1178243072
[258] K. G. Binmore, ?Some limitation theorems for (A, ?n) summability,? Math. Z.,98, No. 3, 227?234 (1967). · Zbl 0146.08001 · doi:10.1007/BF01112416
[259] A. Birkholc, ?On generalized power methods of limitation,? Bull. Acad. Polon. Sci. Sér. Sci. Math., Astron. Phys.,13, No. 4, 323?327 (1965). · Zbl 0129.04303
[260] A. Birkholc, ?On the problem of perfectness of the power methods of limitation,? Bull. Acad. Pol. Sci. Sér. Sci. Math., Astron. Phys.,14, No. 7, 385?388 (1966). · Zbl 0142.02403
[261] J. Boël and M. Duhoux, ?Summability in locally convex spaces,? Ann. Soc. Sci. Bruxelles, Sér. I,86, No. 1, 12?36 (1972).
[262] J. Boos, ?Verträglichkeit von konvergenztreuen Matrixverfahren,? Math. Z.,128, No. 1, 15?22 (1972). · Zbl 0227.40002 · doi:10.1007/BF01111510
[263] D. Borwein, ?Linear functionals connected with strong Cesàro summability,? J. London Math. Soc.,40, No. 4, 628?634 (1965). · Zbl 0143.36303 · doi:10.1112/jlms/s1-40.1.628
[264] D. Borwein, ?On a generalized Cesàro summability method of integral order,? Tôhoku Math. J.,18, No. 1, 71?73 (1966). · Zbl 0141.24901 · doi:10.2748/tmj/1178243482
[265] D. Borwein, ?On a method of summability equivalent to the Cesàro method,? J. London Math. Soc.,42, No. 2, 339?343 (1967). · Zbl 0143.28002 · doi:10.1112/jlms/s1-42.1.339
[266] D. Borwein, ?On generalized Cesàro summability,? Indian J. Math.,9, No. 1, 55?64 (1967).
[267] D. Borwein, ?A Tauberian theorem for Borel-type methods of summability,? Can. J. Math.,21, No. 3, 740?747 (1969). · Zbl 0175.34704 · doi:10.4153/CJM-1969-083-7
[268] D. Borwein, ?On absolute Borel-type methods of summability,? Proc. Amer. Math. Soc.,24, No. 1, 85?89 (1970). · Zbl 0185.30302 · doi:10.1090/S0002-9939-1970-0249866-X
[269] D. Borwein, ?On Riesz and generalized Cesàro summability,? J. London Math. Soc.,2, No. 1, 61?66 (1970). · Zbl 0185.30301 · doi:10.1112/jlms/s2-2.1.61
[270] D. Borwein and F. P. Cass, ?Strong Nörlund summability,? Math. Z.,103, No. 2, 94?111 (1968). · Zbl 0157.38001 · doi:10.1007/BF01110621
[271] D. Borwein and F. P. Cass, ?Multiplication theorems for strong Nörlund summability,? Math. Z.,107, No. 1, 33?42 (1968). · Zbl 0162.35701 · doi:10.1007/BF01111045
[272] D. Borwein and Y. Matsuoka, ?On multiplication of Cesàro summable series,? J. London Math. Soc.,38, No. 4, 393?400 (1963). · Zbl 0115.27501 · doi:10.1112/jlms/s1-38.1.393
[273] D. Borwein and R. Phillips, ?Scales of logarithmic methods of summability,? Can. Math. Bull.,12, No. 4, 445?452 (1969). · Zbl 0181.33601 · doi:10.4153/CMB-1969-054-7
[274] D. Borwein and J. H. Rizvi, ?On Abel-type methods of summability,? J. Reine und Angew. Math.,247, 139?145 (1971). · Zbl 0211.09101
[275] D. Borwein and J. H. Rizvi, ?On strong summability,? J. Reine und Angew. Math.,260, 119?126 (1973). · Zbl 0255.40006
[276] D. Borwein and D. C. Russell, ?On Riesz and generalized Cesàro summability of arbitrary positive order,? Math. Z.,99, No. 2, 171?177 (1967). · Zbl 0146.07902 · doi:10.1007/BF01123746
[277] D. Borwein and B. L. Shawyer, ?On absolute Riesz summability factors,? J. London Math. Soc.,39, No. 3, 455?465 (1964). · Zbl 0138.04301 · doi:10.1112/jlms/s1-39.1.455
[278] D. Borwein and B. L. Shawyer, ?On strong Riesz summability factors,? J. London Math. Soc.,40, 111?126 (1965). · Zbl 0128.28303 · doi:10.1112/jlms/s1-40.1.111
[279] D. Borwein and B. L. Shawyer, ?On Borel-type methods,? Tôhoku Math. J.,18, No. 3, 283?298 (1966). · Zbl 0161.25001 · doi:10.2748/tmj/1178243418
[280] D. Borwein and B. L. Shawyer, ?On Borel-type methods. II,? Tôhoku Math. J.,19, No. 2, 232?237 (1967). · Zbl 0161.25002 · doi:10.2748/tmj/1178243320
[281] L. S. Bosanquet, ?An inequality for sequence transformations,? Mathematika,13, No. 1, 26?41 (1966). · Zbl 0144.05402 · doi:10.1112/S0025579300004150
[282] B. J. Boyer, and L. I. Holder, ?A generalization of absolute Rieszian summability,? Proc. Amer. Math. Soc.,14, No. 3, 459?464 (1963). · Zbl 0111.26201 · doi:10.1090/S0002-9939-1963-0149155-4
[283] G. Brauer, ?Summability viewed as integration,? Bull. Amer. Math. Soc.,74, No. 3, 609?614 (1988). · Zbl 0157.37801 · doi:10.1090/S0002-9904-1968-12032-4
[284] G. Brauer, ?Summability and Fourier analysis,? Pacif. J. Math.,40, No. 1, 33?43 (1972). · Zbl 0202.13903 · doi:10.2140/pjm.1972.40.33
[285] H. I. Brown, Onl-l Methods of Summation, Doctoral Dissertation, Rutgers State Univ. (1966); Dissert. Abs.,B27, No. 6, 2013?2014 (1966).
[286] H. I. Brown, ?Replaceability ofl-l methods of summation,? Mich. Math. J.,14, No. 4, 467 (1967). · Zbl 0167.33301 · doi:10.1307/mmj/1028999849
[287] H. I. Brown, ?The summability field of a perfectl-l method of summation,? J. Anal. Math.,20, 281?287 (1967). · Zbl 0174.45104 · doi:10.1007/BF02786676
[288] H. I. Brown, ?Entire methods of summation,? Compos. Math.,21, No. 1, 35?42 (1969). · Zbl 0172.33802
[289] H. I. Brown, ?A note on type P methods of summation,? Compos. Math.,22, No. 1, 23?28 (1970).
[290] H. I. Brown and V. F. Cowling, ?On consistency ofl-l methods of summation,? Mich. Math. J.,12, No. 3, 357?362 (1965). · Zbl 0136.35302 · doi:10.1307/mmj/1028999372
[291] H. I. Brown, J. P. Crawford, and H. H. Stratton, ?On summability fields of conservative operators,? Bull. Amer. Math. Soc.,75, No. 5, 992?997 (1969). · Zbl 0181.14101 · doi:10.1090/S0002-9904-1969-12331-1
[292] H. I. Brown and D. R. Kerr, ?Some remarks onl-l summability,? Bull. Amer. Math. Soc.,74, No. 3, 529?532 (1968). · Zbl 0169.39002 · doi:10.1090/S0002-9904-1968-11994-9
[293] H. I. Brown, D. R. Kerr, and H. H. Stratton, ?The structure of B [c] and extensions of the concept of conull matrix,? Proc. Amer. Math. Soc.,22, No. 1, 7?14 (1969). · Zbl 0175.43003
[294] H. I. Brown and H. H. Stratton, ?Conullity of operators on some FK-spaces,? Proc. Amer. Math. Soc.,25, No. 4, 717?727 (1970). · Zbl 0197.39805
[295] H. I. Brown and H. H. Stratton, ?Some FK spaces that are conservative summability fields,? J. London Math. Soc.,3, No. 2, 363?370 (1971). · Zbl 0216.13303 · doi:10.1112/jlms/s2-3.2.363
[296] M. Buntinas, ?On sectionally dense summability fields,? Math. Z.,132, No. 2, 141?149 (1973). · Zbl 0247.40004 · doi:10.1007/BF01213919
[297] P. L. Butzer, and H. G. Neuheuser, ?Tauberian conditions for Cesàro methods,? C. R. Acad. Sci.,258, No. 18, 4411?4412 (1964). · Zbl 0127.28702
[298] P. L. Butzer and H. G. Neuheuser, ?Auf Cesàro-Limitierungsverfahren eingeschränkte Tauberbedingungen,? Monatsh. Math.,69, No. 1, 1?17 (1965). · Zbl 0143.07803 · doi:10.1007/BF01313439
[299] F. P. Cass, ?Convexity theorems for Nörlund and strong Nörlund summability,? Math. Z.,112, No. 5, 357?363 (1969). · Zbl 0182.08504 · doi:10.1007/BF01110230
[300] P. Cassens and F. Regan, ?On generalized Lambert summability,? Comment. Math. Univ. Carol.,11, No. 4, 829?839 (1970). · Zbl 0208.33101
[301] S. C. Chang, Summability: Projections, Closure Properties and Consistency Problems, Carlton Univ., Ottawa, Ontario (1968).
[302] S. C. Chang, ?Conull FK spaces belonging to the class O,? Math. Z.,113, No. 3, 249?254 (1970). · Zbl 0176.43002 · doi:10.1007/BF01110197
[303] S. C. Chang, M. S. Macphail, A. K. Snyder, and A. Wilansky, ?Consistency and replaceability for conull matrices,? Math. Z.,105, No. 3, 208?212 (1968). · Zbl 0155.38801 · doi:10.1007/BF01109899
[304] C. Chou, ?The multipliers of the space of almost convergent sequences,? Ill. J. Math.,16, No. 4, 687?694 (1972). · Zbl 0241.43002
[305] B. Choudhary, and P. Vermes, ?Semitranslative summability methods,? Stud. Sci. Math. Hung.,1, Nos. 3?4, 403?410 (1966). · Zbl 0151.06302
[306] W. D. Clark, H. L. Gray, and J. E. Adams, ?A note on the T-transformation of Lubkin,? J. Res. Nat. Bur. Stand.,B73, No. 1, 25?29 (1969). · Zbl 0172.33801 · doi:10.6028/jres.073B.003
[307] J. Copping, ?On the consistency and relative strength of regular summability methods,? Proc. Cambridge Phil. Soc.,62, No. 3, 421?428 (1966). · Zbl 0151.05703 · doi:10.1017/S0305004100040007
[308] V. F. Cowling, ?Inclusion relations between matrices,? Math. Z.,98, No. 3, 192?195 (1967). · Zbl 0147.04902 · doi:10.1007/BF01112412
[309] V. F. Cowling and C. L. Miracle, ?Corrections to and remarks on some results for the generalized Lototsky transform,? Can. J. Math.,16, No. 3, 423?428 (1964). · Zbl 0132.04201 · doi:10.4153/CJM-1964-044-1
[310] R. H. Cox and R. E. Powell, ?Regularity of net summability transforms on certain linear topological spaces,? Proc. Amer. Math. Soc.,21, No. 2, 471?476 (1969). · Zbl 0174.17901 · doi:10.1090/S0002-9939-1969-0243235-6
[311] J. P. Crawford, Transformations in Banach Spaces with Applications to Summability Theory, Doctoral Dissertation, Lehigh Univ. (1966); Dissert. Abs.,B27, No. 6, 2019 (1966).
[312] R. W. Cross, ?On the conditions for a T-matrix to evaluate no bounded divergent sequence,? Bull. Soc. Math. Belg.,15, No. 3, 243?252 (1963). · Zbl 0118.28602
[313] E. C. Daniel, ?On absolute summability factors of infinite series,? Proc. Japan Acad.,40, No. 2, 65?69 (1964). · Zbl 0129.04304 · doi:10.3792/pja/1195522834
[314] E. C. Daniel, ?On the absolute Nörlund summability factors of infinite series,? Riv. Mat. Univ. Parma,5, 219?232 (1964). · Zbl 0143.28201
[315] E. C. Daniel, ?On the absolute Cesàro summability factors of infinite series,? Arch. Math.,18, No. 6, 627?632 (1967). · Zbl 0177.08302 · doi:10.1007/BF01898872
[316] E. C. Daniel, ?Absolute summability factors for series bounded (\=N, pn),? Rend. Circolo Mat. Palermo,17, No. 1, 68?80 (1968). · Zbl 0187.01701 · doi:10.1007/BF02849550
[317] G. Das, ?On some methods of summability,? Quart. J. Math.,17, No. 67, 244?256 (1966). · Zbl 0145.29002 · doi:10.1093/qmath/17.1.244
[318] G. Das, ?On some methods of summability. II,? Quart. J. Math.,19, No. 76, 417?431 (1968). · Zbl 0194.08802 · doi:10.1093/qmath/19.1.417
[319] G. Das, ?On the absolute Nörlund summability factors of infinite series,? J. London Math. Soc.,41, No. 4, 685?692 (1966). · Zbl 0146.29002 · doi:10.1112/jlms/s1-41.1.685
[320] G. Das, ?On the absolute Nörlund summability factors of infinite series. II,? J. London Math. Soc.,4, No. 2, 193?214 (1971). · Zbl 0246.40003 · doi:10.1112/jlms/s2-4.2.193
[321] G. Das, ?Discontinuous Riesz means,? Math. Student,34, Nos. 3?4, 153?162 (1966(1968)).
[322] G. Das, ?Some theorems on absolute Nörlund summability,? J. Indian Math. Soc.,31, No. 1, 1?9 (1967). · Zbl 0156.28503
[323] G. Das, ?A new method of summability,? J. Indian Math. Soc.,31, No. 3, 149?160 (1967). · Zbl 0165.07202
[324] G. Das, ?On a theorem of Hardy and Littlewood,? Proc. Cambridge Phil. Soc.,63, No. 3, 707?713 (1967). · doi:10.1017/S0305004100041694
[325] G. Das, ?A note on Nörlund means,? Riv. Mat. Univ. Parma,8, 65?75 (1967).
[326] G. Das, ?Products of Nörlund methods,? J. Indian Math. Soc.,32, Nos. 3?4, 155?171 (1968(1969)). · Zbl 0191.35206
[327] G. Das, ?Tauberian theorems for absolute Nörlund summability,? Proc. London Math. Soc.,19, No. 2, 357?384 (1969). · Zbl 0183.32603 · doi:10.1112/plms/s3-19.2.357
[328] G. Das, ?A Tauberian theorem for absolute summability,? Proc. Cambridge Phil. Soc.,67, No. 2, 321?326 (1970). · doi:10.1017/S0305004100045606
[329] G. Das, ?Some inclusion theorems for Nörlund methods,? J. Indian Math. Soc.,35, Nos. 1?4, 241?248 (1971). · Zbl 0251.40006
[330] G. Das, ?Convergence, absolute convergence and strong convergence with periodicity,? J. London Math. Soc.,6, No. 2, 337?347 (1973). · Zbl 0263.40002 · doi:10.1112/jlms/s2-6.2.337
[331] G. Das, ?Inclusion theorems for an absolute method of summability,? J. London Math. Soc.,6, No. 3, 467?472 (1973). · Zbl 0264.40004 · doi:10.1112/jlms/s2-6.3.467
[332] G. Das, V. P. Srivastava, and R. N. Mohapatra, ?On absolute summability factors of infinite series,? J. Indian Math. Soc.,31, No. 4, 189?200 (1967(1968)). · Zbl 0169.39101
[333] D. F. Dawson, ?On certain sequence-to-sequence transformations which preserve convergence,? Proc. Amer. Math. Soc.,14, No. 4, 542?545 (1963). · Zbl 0114.26801 · doi:10.1090/S0002-9939-1963-0155123-9
[334] D. F. Dawson, ?Linear methods which sum sequences of bounded variation,? Proc. Amer. Math. Soc.,17, No. 2, 345?348 (1966). · Zbl 0151.05803 · doi:10.1090/S0002-9939-1966-0188666-5
[335] D. F. Dawson, ?A theorem on linear summability,? Amer. Math. Month.,73, No. 2, 172?174 (1966). · Zbl 0136.35202 · doi:10.2307/2313554
[336] D. F. Dawson, ?Matrix summability of convex sequences,? Proc. Amer. Math. Soc.,19, No. 5, 1035?1038 (1968). · doi:10.1090/S0002-9939-1968-0232125-X
[337] D. F. Dawson, ?Matrix summability over certain classes of sequences ordered with respect to rate of convergence,? Pacif. J. Math.,24, No. 1, 51?56 (1968). · Zbl 0157.11202 · doi:10.2140/pjm.1968.24.51
[338] D. F. Dawson, ?Summability domains of matrix methods,? Monatsh. Math.,73, No. 3, 199?206 (1969). · Zbl 0177.08301 · doi:10.1007/BF01300535
[339] D. F. Dawson, ?A generalization of a theorem of Hans Hahn concerning matrix summability,? Boll. Unione Mat. Ital.,3, No. 3, 349?356 (1970). · Zbl 0193.36402
[340] D. F. Dawson, ?Summability domains of matrix methods. Errata,? Monatsh. Math.,74, No. 5, 398 (1970). · doi:10.1007/BF01298401
[341] D. F. Dawson, ?Mapping properties of matrix summability methods,? Ann. Mat. Pura Appl.,88, 1?8 (1971). · Zbl 0221.40006 · doi:10.1007/BF02415056
[342] D. F. Dawson, ?Matrix methods which sum sequences of bounded k-variation,? Publs. Inst. Math.,12, 37?40 (1971). · Zbl 0227.40001
[343] D. F. Dawson, ?Summability of subsequences and stretching of sequences,? Pacif. J. Math.,44, No. 2, 455?460 (1973). · Zbl 0256.40004 · doi:10.2140/pjm.1973.44.455
[344] A. Derkowska, ?Pewne w?asno?ci topologiczne pól method limitowania powstalych przez z?o?enie metody Wo?kowa z metodca Toeplitza,? Zesz. Nauk. Uniw. ?ódzk., Ser. 2, No. 34, 95?103 (1969).
[345] R. De Vos, Distinguished Subsets and Matrix Maps between FK Spaces, Doctoral Dissertation, Lehigh Univ. (1972).
[346] R. De Vos, ?? maps between FK spaces and summability,? Math. Z.,129, No. 4, 287?298 (1972). · Zbl 0235.46027 · doi:10.1007/BF01181618
[347] G. D. Dikshit, ?On inclusion relation between Riesz and Nörlund means,? Indian J. Math.,7, No. 2, 78?81 (1965). · Zbl 0141.24902
[348] G. D. Dikshit, ?A note on Riesz and Nörlund means,? Rend. Circol. Mat. Palermo,18, No. 1, 49?61 (1969). · Zbl 0232.40013 · doi:10.1007/BF02888945
[349] H. P. Dikshit, ?A Tauberian theorem for the (C, 1) (N, l/(n+1)) summability method,? Proc. Amer. Math. Soc.,25, No. 2, 391?392 (1970). · Zbl 0192.41801
[350] S. A. Douglass, ?On a concept of summability in amenable semigroups,? Math. Scand.,23, No. 1, 96?102 (1968). · Zbl 0181.41803 · doi:10.7146/math.scand.a-10900
[351] A. F. Dowidar, ?Summability and interpolation polynomials,? Proc. Kon. Ned. Akad. Wetensch.,A66, No. 2, 185?188 (1963); Indag. Math.,25, No. 2, 185?188 (1963). · doi:10.1016/S1385-7258(63)50018-3
[352] A. F. Dowidar and G. M. Petersen, ?Summability of subsequences,? Quart. J. Math.,13, No. 50, 81?89 (1962). · Zbl 0112.28701 · doi:10.1093/qmath/13.1.81
[353] A. F. Dowidar and G. M. Petersen, ?The distribution of sequences and summability,? Can. J. Math.,25, No. 1, 1?10 (1963). · Zbl 0126.27906 · doi:10.4153/CJM-1963-001-8
[354] J. P. Duran, ?Infinite matrices and almost-convergence,? Math. Z.,128, No. 1, 75?83 (1972). · Zbl 0228.40005 · doi:10.1007/BF01111514
[355] J. P. Duran, ?Strongly regular matrices, almost-convergence, and Banach limits,? Duke Math. J.,39, No. 3, 497?502 (1972). · Zbl 0244.40003 · doi:10.1215/S0012-7094-72-03956-7
[356] J. R. Edwards and S. G. Wayment, ?On the nonequivalence of conservative Hausdorff methods and Hausdorff moment sequences,? Pacif. J. Math.,38, No. 1, 39?47 (1971). · Zbl 0223.40007 · doi:10.2140/pjm.1971.38.39
[357] J. R. Edwards and S. G. Wayment, ?A summability integral,? J. Reine und Angew. Math.,255, 85?93 (1972). · Zbl 0236.40005
[358] K. Endl, ?On systems of linear inequalities in infinitely many variables and generalized Hausdorff means,? Math. Z.,82, No. 1, 1?7 (1963). · Zbl 0111.26102 · doi:10.1007/BF01112818
[359] K. Endl, ?Über eine Dichteaussage bei Differenzengleichungen und ihre Anwendung auf den Vergleich von Hausdorff-Verfahren,? Math. Z.,86, No. 4, 285?290 (1964). · Zbl 0158.05302 · doi:10.1007/BF01110403
[360] P. Erdös, and G. Piranian, ?Laconicity and redundancy of Toeplitz matrices,? Math. Z.,83, No. 5, 381?394 (1964). · Zbl 0129.04201 · doi:10.1007/BF01111000
[361] P. Erdös and G. Piranian, ?Essential Hausdorff cores of sequences,? J. Indian Math. Soc.,30, No. 2, 93?115 (1967). · Zbl 0148.28903
[362] F. Erwe, ?Limitierung beschränkter Folgen reeller Zahlen,? Ber. Ges. Math. und Datenverarb., No. 57, 99?108 (1972). · Zbl 0241.40003
[363] J. Favard, ?On the comparison of the processes of summation,? J. Soc. Indust. Appl. Math., Ser. B, Numer. Anal.,1, 38?52 (1964). · Zbl 0151.07202 · doi:10.1137/0701004
[364] W. Feller, ?On the classical Tauberian theorems,? Arch. Math.,14, Nos.4?5, 317?322 (1963). · Zbl 0118.09702 · doi:10.1007/BF01234960
[365] H. Fiedler, ?Über Bohr-Hardy’sehe Faktorenbie Riesz’schen Mitteln,? Mitt. Math. Sem. Giessen, No. 60 (1963).
[366] D. J. Fleming and P. G. Jessup, ?Perfect matrix methods,? Proc. Amer. Math. Soc.,29, No. 2, 319?324 (1972). · Zbl 0213.39203 · doi:10.1090/S0002-9939-1971-0279484-X
[367] M. Fréchet, ?On summability of divergent series,? Math. Notae,18, No. 1, 1?14 (1962).
[368] L. Frennemo, ?On general Tauberian remainder theorems,? Math. Scand.,17, 77?88 (1965). · Zbl 0142.39501 · doi:10.7146/math.scand.a-10765
[369] G. Fricke and R. E. Powell, ?A theorem on entire methods of summation,? Compos. Math.,22, No. 3, 253?259 (1970). · Zbl 0202.05601
[370] J. A. Fridy, Divisor Summability Methods, Doctoral Dissertation, Univ. N. C., Chapel Hill (1964); Dissert. Abs.,26, No. 3, 1662 (1965).
[371] J. A. Fridy, ?Divisor summability methods,? J. Math. Anal. Appl.,12, No. 2, 235?243 (1965). · Zbl 0128.28202 · doi:10.1016/0022-247X(65)90034-X
[372] J. A. Fridy, ?Divisor moment means,? Math. Z.,102, No. 2, 158?162 (1967). · Zbl 0173.06002 · doi:10.1007/BF01112081
[373] J. A. Fridy, ?A note on absolute summability,? Proc. Amer. Math. Soc.,20, No. 1, 285?286 (1969).
[374] J. A. Fridy, ?Properties of absolute summability matrices,? Proc. Amer. Math. Soc.,24, No. 3, 583?585 (1970). · Zbl 0187.32103 · doi:10.1090/S0002-9939-1970-0265815-2
[375] W. Fröhlich, ?Einschliessungssätze für das abelsche Limitierungsverfahren bezüglich Konvergenz-geschwindigkeit und absoluter Konvergenz,? Mitt. Math. Sem. Giessen, No. 97 (1973). · Zbl 0283.40008
[376] D. Gaier, ?Der allgemeine Lückenumkehrsatz für das Borel-Verfahren,? Math. Z.,88, No. 5, 410?417 (1965). · Zbl 0129.04502 · doi:10.1007/BF01112223
[377] D. Gaier, ?On the coefficients and the growth of gap power series,? SIAM J. Numer. Anal.,3, 248?265 (1966). · Zbl 0146.09704 · doi:10.1137/0703019
[378] D. Gaier, ?Complex variable proofs of Tauberian theorems,? Mat.-Sci. Rept. Inst. Math. Sci. India, No. 56 (1966). · Zbl 0352.40003
[379] D. Gaier, ?Limitierung gestreckter Folgen,? Pubis. Ramanujan Inst., No. 1, Ananda Rau Mem. Vol., 223?234 (1968?1969).
[380] T. H. Ganelius, The Remainder in Wiener’s Tauberian Theorem, Mathematica Gothoburgensia, 1, Almquist and Wiksell, Stockholm-Göteborg-Uppsala (1962). · Zbl 0109.33303
[381] T. H. Ganelius, ?Tauberian theorems for the Stieltjes transforms,? Math. Scand.,14, No. 2, 213?219 (1964). · Zbl 0136.10401 · doi:10.7146/math.scand.a-10720
[382] T. H. Ganelius, ?Tauberian remainder theorems,? Mat.-Sci. Inst. Math. Sci. India, Semin. Anal., No. 2 (1968?1969).
[383] T. H. Ganelius, Tauberian Remainder Theorems, (Lect. Notes Math., 232), VI, Springer, Berlin e.a. (1971). · Zbl 0222.40001
[384] D. J. H. Garling and A. Wilansky, ?On a summability theorem of Berg, Crawford and Whitley,? Proc. Cambridge Phil. Soc.,71, No. 3, 495?497 (1972). · doi:10.1017/S0305004100050775
[385] M. L. Glasser, ?A note on the Littlewood-Tauber theorem,? Proc. Amer. Math. Soc.,20, No. 1, 39?40 (1969). · Zbl 0165.48902 · doi:10.1090/S0002-9939-1969-0233111-7
[386] M. Glatfeld, ?Einführung in die allgemeine Theorie der starken Rieszschen Summierbarkeit,? Überlicke Math.,4, 93?120 (1972). · Zbl 0254.40011
[387] C. Goffman and H. V. Huneke, ?The ordered set of Nörlund methods,? Math. Z.,114, No. 1, 1?8 (1970). · Zbl 0176.01501 · doi:10.1007/BF01111863
[388] C. Goffman and G. N. Wollan, ?Sequences of regular summability matrices,? Monatsh. Math.,76, No. 2, 118?120 (1972). · Zbl 0236.40009 · doi:10.1007/BF01298276
[389] D. L. Golasmith, ?Remark on a nonlinear convergence-producing series transformation,? Amer. Math. Month.,72, No. 5, 523?525 (1965). · Zbl 0135.26501 · doi:10.2307/2314125
[390] G. Halász, ?Remarks to a paper of D. Gaier on gap theorems,? Acta. Sci. Math.,28, Nos. 3?4, 311?322 (1967). · Zbl 0179.38303
[391] C. E. Harrell, Concerning Sequence-to-Sequence Transformations, Doctoral Dissertation, Univ. Texas (1966); Dissert. Abs.,B27, No. 9, 3182 (1967).
[392] C. E. Harrell, ?Riesz matrices that are also Hausdorff matrices,? Proc. Amer. Math. Soc.,22, No. 2, 303?304 (1969). · Zbl 0176.01603 · doi:10.1090/S0002-9939-1969-0241847-7
[393] C. E. Harrell, ?Conderning sequence-to-sequence transformations,? Rend., Circolo Mat. Palermo,19, No. 1, 97?108 (1970). · Zbl 0227.40007 · doi:10.1007/BF02843889
[394] F. W. Hartmann, A Generalization of the Sonnenschein Summability Transform, Doctoral Dissertation, Lehigh Univ. (1968); Dissert. Abs.,B29, No. 5, 1754 (1968).
[395] R. Hermann, ?Zur Summierungstheorie im abzählbar unendlichen, Torusraom. I,? Math. Ann.,175, No. 4, 287?296 (1968). · Zbl 0183.33302 · doi:10.1007/BF02063213
[396] R. Hermann and P. Srivastava, ?An analog of M. Riesz’s mean value theorem in the theory of absolute summability,? J. London Math. Soc.,1, No. 3, 535?544 (1969). · Zbl 0182.44701 · doi:10.1112/jlms/s2-1.1.535
[397] J. D. Hill and W. T. Sledd, ?Summability (Z, p) and sequences of periodic type,? Can. J. Math.,16, No. 4, 741?754 (1964). · Zbl 0136.35802 · doi:10.4153/CJM-1964-071-9
[398] J. D. Hill and W. T. Sledd, ?Approximation in bounded summability fields,? Can. J, Math.,20, No. 2, 410?415 (1968). · Zbl 0162.08001 · doi:10.4153/CJM-1968-038-6
[399] H. Hirokawa, ?(?,?, ?) methods of summability,? Tôhoku Math. J.,16, No. 4, 374?383 (1964). · Zbl 0128.28404 · doi:10.2748/tmj/1178243648
[400] H. Hirokawa, ?On the total regularity of Riemann summability,? Proc. Japan Acad.,41, No. 8, 656?660 (1965). · Zbl 0141.06301 · doi:10.3792/pja/1195522287
[401] H. Hirokawa, ?On the harmonic summability of higher order,? Proc. Japan Acad.,43, No. 7, 629?632 (1967). · Zbl 0161.25103 · doi:10.3792/pja/1195521522
[402] H. Hirokawa, ?Tauberian theorems for (?,?, ?) summability,? Tohoku Math. J.,24, No. 2, 191?199 (1972). · Zbl 0243.40010 · doi:10.2748/tmj/1178241529
[403] L. Hoischen, ?über das Produkt zweier Verfahren der gewöhnlichen und der ablosuten Limitierung,? Arch. Math.,17, No. 5, 443?451 (1966). · Zbl 0143.07604 · doi:10.1007/BF01899625
[404] L. Hoischen, ?Über die asymptotische Approximation durch analytische Funktionen mit Anwendungen in der Theorie der Integraltransformationen und Limitierungsverfahren,? Mitt. Math. Sem. Giessen, No. 74 (1967). · Zbl 0164.37601
[405] L. Hoischen, ?Some inclusion theorems for generalized Abel and Borel summability,? J. London Math. Soc.,42, No. 2, 229?234 (1967). · Zbl 0144.31003 · doi:10.1112/jlms/s1-42.1.229
[406] L. Hoischen, ?An inclusion theorem for Abel and Lambert summability,? J. London Math. Soc.,42, No. 4, 591?594 (1967). · Zbl 0152.25004 · doi:10.1112/jlms/s1-42.1.591
[407] L. Hoischen, ?Über die Wirkfelder verallgemeinerter Abel scher Limitierungsverfahren,? Acta Math. Acad. Sci. Hung.,20, Nos. 1?2, 149?157 (1969). · Zbl 0175.05701 · doi:10.1007/BF01894576
[408] L. Hoischen, ?Einschliessungssätze für eine allgemeine Klasse von Limitierungsverfahren,? Math. Ann.,189, No. 3, 202?210 (1970). · Zbl 0193.36401 · doi:10.1007/BF01352446
[409] L. Hoischen, ?Über die Wirkfelder einer allgemeinen Klasse von Limitierungsverfahren,? Mitt. Math. Sem. Giessen, No. 94, 49?60 (1971). · Zbl 0232.40011
[410] L. Hoischen and E. Mogk, ?Inclusion theorems for the Abel summability,? J. London Math. Soc.,1, No. 1, 51?56 (1969). · Zbl 0181.33502 · doi:10.1112/jlms/s2-1.1.51
[411] F. C. Hsiang, ?On a theorem of Burkill-Petersen? Port. Math.,22, Nos. 3?4, 137?141 (1963).
[412] F. C. Hsiang, ?On a theorem of Burkill,? Indian J. Math.,6, No. 1, 39?43 (1964).
[413] F. C. Hsiang, ?On Rieszsummability of subsequences,? Port. Math.,24, Nos. 3?4, 155?161 (1965).
[414] T. Husain, ?Two Tauberian theorems in Banach spaces,? Compos. Math.,18, Nos.1?2, 87?93 (1966). · Zbl 0158.13604
[415] K. Ikeno, ?Summability methods of Borel type and Tauberian series,? Tôhoku Math. J.,16, No. 2, 209?225 (1964). · Zbl 0134.28201 · doi:10.2748/tmj/1178243707
[416] K. Ikeno, ?Correction: ?Summability methods of Borel type and Tauberian series?,? Tôhoku Math. J.,19, 101 (1967). · Zbl 0156.06702 · doi:10.2748/tmj/1178243354
[417] L. Ilieff, ?Konvergenie Abschnittsfolgen C-summierbarer Reihen,? Rev. Math. Pures Appl. (RPR),8, No. 3, 349?351 (1963).
[418] A. E. Ingham, ?On Tauberian theorems,? Proc. London Math. Soc.,14a, 157?173 (1965). · Zbl 0132.04002 · doi:10.1112/plms/s3-14A.1.157
[419] A. E. Ingham, ?The equivalence theorem for Cesàro and Riesz summability,? Pubis. Ramanujan Inst., No. 1, Ananda Rau Mem. Vol., 107?113 (1968?1969).
[420] A. E. Ingham, ?On the high-indices theorem for Borel summability,? in: Number Theory and Analysis, New York (1969), pp. 119?135.
[421] R. L. Irwin, ?Absolute summability factors, I,? Tôhoku Math. J., 18, No. 3, 247?254 (1966). · Zbl 0144.31403 · doi:10.2748/tmj/1178243413
[422] R. L. Irwin, ?Correction: ?Absolute summability factors. I?? Tôhoku Math. J.,20, 111 (1968). · doi:10.2748/tmj/1178243223
[423] R. L. Irwin, Absolute Hardy-Bohr Factors, Doctoral Dissertation, Univ. Utah (1965); Bull. Univ. Utah,58, No. 21, 202 (1967).
[424] R. L. Irwin, ?A note on absolute summability factors,? Enseign. Math.14, Nos. 3?4, 285?288 (1968(1970)).
[425] R. L. Irwin and G. E. Petersen, ?Absolute summability factors,? J. London Math. Soc.,2, No. 4, 597?602 (1970). · Zbl 0198.39701 · doi:10.1112/jlms/2.Part_4.597
[426] R. L. Irwin and A. Peyerimhoff, ?On absolute summability factors,? Enseign, Math.,15, 159?167 (1969).
[427] K. Ishiguro, ?On the summability methods of logarithmic type,? Proc. Japan Acad.,38, No. 10, 703?705 (1962). · Zbl 0118.28801 · doi:10.3792/pja/1195523203
[428] K. Ishiguro, ?A converse theorem on the summability methods,? Proc. Japan Acad.,39, No. 1, 38?41 (1963). · Zbl 0113.04801 · doi:10.3792/pja/1195523177
[429] K. Ishiguro, ?Tauberian theorems concerning the summability methods of logarithmic type,? Proc. Japan Acad.,39, No. 3, 156?59 (1963). · Zbl 0115.27502 · doi:10.3792/pja/1195523110
[430] K. Ishiguro, ?A note on the logarithmic means,? Proc. Japan Acad.,39, No. 8, 575?577 (1963). · Zbl 0133.00904 · doi:10.3792/pja/1195522961
[431] K. Ishiguro, ?On the summability method (Y),? Proc. Japan Acad.,40, No. 7, 482?486 (1964). · Zbl 0135.26301 · doi:10.3792/pja/1195522679
[432] K. Ishiguro, ?A Tauberian theorem for (J, pn) summability,? Proc. Japan Acad.,40, No. 10, 807?812 (1964). · Zbl 0125.30903 · doi:10.3792/pja/1195522569
[433] K. Ishiguro, ?On the Sonnenschein methods of summability,? Math. Z.,84, No. 4, 374?377 (1964). · Zbl 0133.00902 · doi:10.1007/BF01109905
[434] K. Ishiguro, ?Two Tauberian theorems for (J, pn) summability,? Proc. Japan Acad.,41, No. 1, 40?45 (1965). · Zbl 0125.31001 · doi:10.3792/pja/1195522526
[435] K. Ishiguro, ?The relation between (N, pn) and (\=N, pn) summability,? Proc. Japan Acad.,41, No. 2, 120?122 (1965). · Zbl 0137.26601 · doi:10.3792/pja/1195522479
[436] K. Ishiguro, ?The relation between (N, pn) and (\=N, pn) summability. II,? Proc. Japan Acad.,41, No. 9, 773?775 (1965). · Zbl 0142.02602 · doi:10.3792/pja/1195522243
[437] K. Ishiguro, ?On the summability methods of Riemann’s type,? Bull. Soc. Math. Belg.,19, No. 3, 289?314 (1967). · Zbl 0173.05901
[438] T. B. Iwi?ski, ?Some remarks on Toeplitz methods and continuity,? Rocz. Pol. Tow. Mat., Ser. 1,16, 37?43 (1972).
[439] A. V. V. Iyer, ?The equivalence of two methods of absolute summability,? Proc. Japan Acad.,39, No. 7, 429?431 (1963). · Zbl 0125.03302 · doi:10.3792/pja/1195522992
[440] R. K. Jain, ?The absolute harmonic summability factors of infinite series,? Colloq. Math.,23, No. 1, 157?164 (1971). · Zbl 0234.40008
[441] R. Jajte, ?On the compositions of integral means with Borel methods of summability,? Ann. Polon. Math.,14, No. 2, 101?116 (1964). · Zbl 0137.03901
[442] R. Jajte, ?On a theorem of Toeplitz,? Colloq. Math.,12, No. 2, 259?263 (1964).
[443] R. Jajte, ?General theory of summability. I,? Acta Sci. Math.,26, Nos. 1?2, 107?116 (1965). · Zbl 0192.21801
[444] R. Jajte, ?Remarks on the structure of the fields of Toeplitz methods,? Bull. Soc. Sci. Lettres. Lód?,16, No. 2, 1?6 (1965). · Zbl 0238.40005
[445] A. Yakimovskii (Jakimovski), ?Tauberian constants for the [J,f(x)] transformations,? Pacif. J. Math.,12, No. 2, 567?576 (1962). · Zbl 0122.30402 · doi:10.2140/pjm.1962.12.567
[446] A. Yakimovskii (Jakimovski) and D. Leviatan ?A property of approximation operators and applications to Tauberian constants,? Math. Z.,102, No. 3, 177?204 (1967). · Zbl 0176.34802 · doi:10.1007/BF01112437
[447] A. Yakimovskii (Jakimovski) and A. Livne, ?General Kojima-Toeplitz-like theorems and consistency theorems,? J. Anal. Math.,24, 323?368 (1971). · Zbl 0254.40009 · doi:10.1007/BF02790379
[448] A. Yakimovskii (Jakimovski) and A. Livne, ?An extension of the Brudno-Mazur-Orlicz theorem,? Stud. Math. (PRL),41, No. 3, 257?262 (1972).
[449] A. Yakimovskii (Jakimovski) and A. Livne, ?On matrix transformations between sequence spaces,? J. Anal. Math.,25, 345?370 (1972). · Zbl 0251.40005 · doi:10.1007/BF02790045
[450] A. Yakimovskii (Jakimovski) and A. Meir, ?Regularity theorems for [F, dn]-transformations,? Ill. J. Math.,9, No. 3, 527?534 (1965).
[451] A. Yakimovskii (Jakimovski) and H. Skerry, ?Some regularity conditions for the (f, dn, z1) summability method,? Proc. Amer. Math. Soc.,24, No. 2, 281?287 (1970).
[452] A. Yakimovskii.(Jakimovski), and J. Tzimbalario, ?Inclusion relations for Riesz typical means,? Proc. Cambridge Phil. Soc.,72, No. 3, 417?423 (1972). · Zbl 0242.40004 · doi:10.1017/S0305004100047253
[453] K. A. Jukes, ?Ordinary, strong, and absolute Tauberian constants,? Proc. London Math. Soc.,22, No. 4, 747?768 (1971). · Zbl 0213.08303 · doi:10.1112/plms/s3-22.4.747
[454] K. A. Jukes, ?On the Ingham and (D, h(n)) summation methods,? J. London Math. Soc.,3, No. 4, 699?710 (1971). · Zbl 0213.08302 · doi:10.1112/jlms/s2-3.4.699
[455] K. A. Jukes, ?On the converse of Mertens’ theorem,? Proc. Cambridge Phil. Soc.,73, No. 3, 467?471 (1973). · Zbl 0255.40001 · doi:10.1017/S0305004100077045
[456] W. Jurkat and A. Peyerimhoff, ?Über Sätze vom Bohr-Hardyschen Typ,? Tôhoku Math. J.,17, No. 1, 55?71 (1965). · Zbl 0131.05501 · doi:10.2748/tmj/1178243619
[457] W. Jurkat and A. Peyerimhoff, ?Über Äquivalenzprobleme und andere limitierungstheoretische Fragen bei Halbgruppen positiver Matrizen,? Math. Ann.,159, No. 4, 234?251 (1965). · Zbl 0135.26201 · doi:10.1007/BF01362441
[458] M. Kac, ?A remark on Wiener’s Tauberian theorem,? Proc. Amer. Math. Soc.,16, No. 6, 1155?1157 (1965). · Zbl 0136.33001
[459] U. Kakkar, ?On the absolute summability factors of infinite series,? Bull. Acad. Pol. Sci. Sér. Sci. Math., Astron. Phys.,19, No. 2, 115?120 (1971). · Zbl 0207.06501
[460] N. J. Kalton, ?On summability domains,? Proc. Cambridge Phil. Soc.,73, No. 2, 327?338 (1973). · Zbl 0248.40004 · doi:10.1017/S0305004100076891
[461] T. Kano, ?Remark to a Tauberian theorem for Borel summability,? J. Fac. Sci. Shinshu Univ.,7, No. 1, 5?6 (1972). · Zbl 0329.40005
[462] L. Karad?i?, ?Remarks on certain theorems from the theory of series,? Publ. Elektrotehn. Fak. Univ. Beogradu, Ser. Mat. i Fiz., Nos. 122?129, 10?13 (1964).
[463] L. Karad?i?, ?On summability of a class of series by a given method,? Publ. Elektrotehn. Fak. Univ. Beogradu, Ser. Mat. i Fiz., Nos. 122?129, 14?16 (1964).
[464] P. Katz and E. G. Straus, ?Infinite sums in algebraic structures,? Pacif. J. Math.,15, No. 1, 181?190 (1965). · Zbl 0135.05806 · doi:10.2140/pjm.1965.15.181
[465] P. B. Kennedy and P. Szüsz, ?On a bounded increasing power series,? Proc. Amer. Math. Soc.,17, No. 3, 580?581 (1966). · doi:10.1090/S0002-9939-1966-0201616-8
[466] J. P. King, ?An extension of the Taylor summability transform,? Proc. Amer. Math. Soc.,16, No. 1, 25?29 (1965). · Zbl 0138.28401 · doi:10.1090/S0002-9939-1965-0170144-X
[467] J. P. King, ?An application of a nonlinear transform to infinite products,? J. Math. Phys.,44, No. 4, 408?409 (1965). · Zbl 0134.28101 · doi:10.1002/sapm1965441408
[468] J. P. King, ?Almost summable sequences,? Proc. Amer. Math. Soc.,17, No. 6, 1219?1225 (1966). · doi:10.1090/S0002-9939-1966-0201872-6
[469] J. P. King, ?Some results for Borel transforms,? Proc. Amer. Math. Soc.,19, No. 4, 991?997 (1968). · Zbl 0159.36301 · doi:10.1090/S0002-9939-1968-0228880-5
[470] J. P. King, and J. J. Swetits, ?Positive linear operators and summability,? J. Austral. Math. Soc.,11, No. 3, 281?290 (1970). · Zbl 0199.45101 · doi:10.1017/S1446788700006650
[471] N. Kishore, ?On the absolute Nörlund summability factors,? Riv. Mat. Univ. Parma,6, 129?134 (1965). · Zbl 0178.05702
[472] N. Kishore, ?A limitation theorem for absolute Nörlund summability,? J. London Math. Soc.,4, No. 2, 240?244 (1971). · Zbl 0226.40004 · doi:10.1112/jlms/s2-4.2.240
[473] N. Kishore and G. C. Hotta, ?On |\=N, pn| summability factors,? Acta Sci. Math.,31, Nos. 1?2, 9?12 (1970). · Zbl 0196.08103
[474] K. Klee and P. Szüsz, ?On summability of subsequences,? Math. Z.,111, No. 3, 205?213 (1969). · Zbl 0176.34301 · doi:10.1007/BF01113286
[475] V. Klee, ?Summability inl(p1, p2,...) spaces,? Stud. Math.,25, No. 3, 277?280 (1965).
[476] V. Klee, ?Correction to ?Summability inl(p1, p2,...),?? Stud. Math.,33, No. 3, 435 (1969).
[477] K. Knopp, Theory and Application of Infinite Series, Vol. 12, Hafner, New York (1971). · JFM 54.0222.09
[478] C. F. Koch, ?On the non-regularity of certain generalized Lototsky transforms,? Ill. J. Math.,10, No. 4, 644?647 (1966). · Zbl 0143.28203
[479] C. F. Koch, ?Some remarks concerning [f, dn] and [F, dn] summability methods,? Can. J. Math.,21, No. 6, 1361?1365 (1969). · Zbl 0189.34502 · doi:10.4153/CJM-1969-150-7
[480] W. Kolodziej, ?Über den Bewies eines Satzes aus der Limitierungstheorie,? Colloq. Math.,23, No. 2, 299?300 (1971).
[481] J. Kope?, ?Some criterions of Nörlund summability,? Rocz. Pol. Tow. Mat., Ser. 1,13, No. 1, 67?75 (1969). · Zbl 0234.40014
[482] J. Korevaar, ?Distribution proof of Wiener’s Tauberian theorem,? Proc. Amer. Math. Soc.,16, No. 3, 353?355 (1965). · Zbl 0134.11401
[483] H. H. Körle, ?Über unstetige absolute Riesz-Summierung. I,? Math. Ann.,176, No. 1, 45?52 (1968). · Zbl 0153.08903 · doi:10.1007/BF02052955
[484] H. H. Körle, ?Über unstetige absolute Riesz-Summierung. II,? Math. Ann.,177, No. 3, 230?234 (1968). · Zbl 0157.11301 · doi:10.1007/BF01350866
[485] H. H. Körle, ?Mercersätze für Riesz-Summierung,? Math. Ann.,181, No. 3, 181?188 (1969). · Zbl 0164.06701 · doi:10.1007/BF01350693
[486] H. H. Körle, ?On absolute summability by Riesz and generalized Cesàro means. I,? Can. J. Math.,22, No. 2, 202?208 (1970). · Zbl 0172.33501 · doi:10.4153/CJM-1970-026-6
[487] H. H. Körle, ?On absolute summability by Riesz and generalized Cesàro means. II,? Can. J. Math.,22, No. 2, 209?218 (1970). · Zbl 0172.33502 · doi:10.4153/CJM-1970-027-3
[488] G. C. N. Kulshrestha, ?Absolute Riesz summability factors of infinite series,? Math. Z.,86, No. 5, 365?371 (1965). · Zbl 0128.28401 · doi:10.1007/BF01110807
[489] G. C. N. Kulshrestha, ?Summability factors for generalized strong Riesz logarithmic boundedness,? Riv. Mat. Univ. Parma,7, 95?104 (1966). · Zbl 0171.30405
[490] J. C. Kurtz, ?Hardy-Bohr theorems,? Tôhoku Math. J.,18, No. 3, 237?246 (1966). · Zbl 0144.31402 · doi:10.2748/tmj/1178243412
[491] J. C. Kurtz, Summability Factors, Doctoral Dissertation, Univ. Utah (1965); Bull. Univ. Utah,58, No. 21, 203?204 (1967).
[492] J. C. Kurtz, ?A note on convergence and summability factors,? Tôhoku Math. J.,20, No. 2, 113?119 (1968). · Zbl 0181.06103 · doi:10.2748/tmj/1178243170
[493] J. C. Kurtz, ?Almost convergent vector sequences,? Tôhoku Math. J.,22, No. 4, 493?498 (1970). · Zbl 0236.46018 · doi:10.2748/tmj/1178242714
[494] J. C. Kurtz, ?Almost convergence in Banach spaces,? Tôhoku Math. J.,24, No. 3, 389?399 (1972). · Zbl 0258.46016 · doi:10.2748/tmj/1178241477
[495] J. C. Kurtz, ?Multipliers on some sequence spaces,? Proc. Cambridge Phil. Soc.,72, No. 3, 393?401 (1972). · doi:10.1017/S030500410004723X
[496] L. C. Kurtz, Vector-Valued Summability Methods on a Linear Normed Space, Doctoral Dissertation, Univ. Utah (1964); Dissert. Abs.,26, No. 9, 5462 (1966).
[497] L. C. Kurtz, ?Inclusion theorems for generalized Hausdorff summability methods,? Proc. Amer. Math. Soc.,20, No. 2, 385?387 (1969). · Zbl 0189.42606 · doi:10.1090/S0002-9939-1969-0235346-6
[498] L. C. Kurtz and D. H. Tucker, ?Vector-valued summability methods on a linear normed space,? Proc. Amer. Math. Soc.,16, No. 3, 419?428 (1965). · Zbl 0135.34501 · doi:10.1090/S0002-9939-1965-0199592-9
[499] B. Kuttner, ?A Tauberian theorem for discontinuous Riesz means. I,? J. London Math. Soc.,38, No. 2, 189?196 (1963). · Zbl 0125.03502 · doi:10.1112/jlms/s1-38.1.189
[500] B. Kuttner, ?A Tauberian theorem for discontinuous Riesz means. II,? J. London Math. Soc.,39, No. 4, 643?648 (1964). · Zbl 0133.01102 · doi:10.1112/jlms/s1-39.1.643
[501] B. Kuttner, ?The high indices theorem for discontinuous Riesz means,? J. London Math. Soc.,39, No. 4, 635?642 (1964). · Zbl 0133.01101 · doi:10.1112/jlms/s1-39.1.635
[502] B. Kuttner, ?On the Nörlund summability of a Cauchy product series,? J. London Math. Soc.,40, No. 4, 671?676 (1965). · Zbl 0133.31001 · doi:10.1112/jlms/s1-40.1.671
[503] B. Kuttner, ?On totally regular summability methods,? Math. Z.,91, No. 4, 348?354 (1966). · Zbl 0136.35301 · doi:10.1007/BF01111235
[504] B. Kuttner, ?On ?translated quasi-Cesàro? summability,? Proc. Cambridge Phil. Soc.,62, No. 4, 705?712 (1966). · Zbl 0143.28102 · doi:10.1017/S0305004100040391
[505] B. Kuttner, ?On ?translated quasi-Cesàro? summability. II,? Proc. Cambridge Phil. Soc.,66, No. 1 39?41 (1969). · doi:10.1017/S0305004100044698
[506] B. Kuttner, ?Note on the generalized Nörlund transformation,? J. London Math. Soc.,42, No. 2, 235?238 (1967). · Zbl 0144.31101 · doi:10.1112/jlms/s1-42.1.235
[507] B. Kuttner, ?On translative summability methods,? Publs. Ramanujan Inst., No. 1, Ananda Rau Mem. Vol., 35?45 (1969).
[508] B. Kuttner, ?On translative summability methods. II,? J. London Math. Soc.,4, No. 1, 88?90 (1971). · Zbl 0216.38603 · doi:10.1112/jlms/s2-4.1.88
[509] B. Kuttner, ?Mercerian theorems involving Cesàro or Hölder means of any positive order,? J. Indian Math. Soc.,34, Nos. 3?4, 151?158 (1970).
[510] B. Kuttner, ?On total translativity of Hausdorff transformations,? Math. Z.,119, No. 1, 89?93 (1971). · Zbl 0196.08102 · doi:10.1007/BF01110947
[511] B. Kuttner, ?On dual summability methods,? Proc. Cambridge Phil. Soc.,71, No. 1, 67?73 (1972). · Zbl 0224.40004 · doi:10.1017/S0305004100050283
[512] B. Kuttner, ?On de la Vallée Poussin and Abel summability,? J. London Math. Soc.,5, No. 2, 303?309 (1972). · Zbl 0237.40008 · doi:10.1112/jlms/s2-5.2.303
[513] B. Kuttner and I. J. Maddox, ?On strong convergence factors,? Quart. J. Math.,16, No. 62, 165?182 (1965). · Zbl 0132.29004 · doi:10.1093/qmath/16.2.165
[514] B. Kuttner and I. J. Maddox, ?Strong Cesàro summability factors,? Quart. J. Math.,21, No. 81, 37?69 (1970). · Zbl 0188.36502 · doi:10.1093/qmath/21.1.37
[515] B. Kuttner and B. E. Rhoades, ?Relations between (N, pn) and (\=N, pn) summability,? Proc. Edinburgh Math. Soc.,16, No. 2, 109?116 (1968). · Zbl 0164.06702 · doi:10.1017/S0013091500012487
[516] B. Kuttner and S. Sherif, ?A relation between Tauberian classes,? Quart. J. Math.,13, No. 49, 35?39 (1962). · Zbl 0111.26204 · doi:10.1093/qmath/13.1.35
[517] B. Kuttner and B. Thorpe, ?On the strong Nörlund summability of a Cauchy product series,? Math. Z.,111, No. 1, 69?86 (1969). · Zbl 0176.01502 · doi:10.1007/BF01110918
[518] B. Kuttner and B. Thorpe, ?On strong Nörlund summability fields,? Can. J. Math.,24, No. 3, 390?399 (1972). · Zbl 0236.40011 · doi:10.4153/CJM-1972-032-4
[519] B. Kuttner and N. Tripathy, ?An inclusion theorem for Hausdorff summability method associated with fractional integrals,? Quart. J. Math.,22, No. 86, 299?308 (1971). · Zbl 0214.07702 · doi:10.1093/qmath/22.2.299
[520] B. Kwee, ?The relation between Nörlund and generalized Abel summability,? J. London Math. Soc.,38, No. 4, 472?476 (1963). · Zbl 0125.03304 · doi:10.1112/jlms/s1-38.1.472
[521] B. Kwee, ?Some theorems on Nörlund summability,? Proc. London Math. Soc.,14, No. 54, 353?368 (1964). · Zbl 0125.03303 · doi:10.1112/plms/s3-14.2.353
[522] B. Kwee, ?The relation between Abel and Riemann summability,? J. London Math. Soc.,39, No. 1, 5?11 (1964). · Zbl 0133.01301 · doi:10.1112/jlms/s1-39.1.5
[523] B. Kwee, ?Absolute regularity of the Nörlund mean,? J. Austral. Math. Soc.,5, No. 1, 1?7 (1965). · Zbl 0125.30902 · doi:10.1017/S1446788700025805
[524] B. Kwee, ?Tauberian theorem for the logarithmic method of summation,? Proc. Cambridge Phil. Soc.,63, No. 2, 401?405 (1967). · Zbl 0147.05002 · doi:10.1017/S0305004100041323
[525] B. Kwee, ?On Perron’s method of summation,? Proc. Cambridge Phil. Soc.,63, No. 4, 1033?1040 (1967). · Zbl 0172.07504 · doi:10.1017/S0305004100042079
[526] B. Kwee, ?The relation between the sequence-to-sequence and the series-to-series versions of quasi-Hausdorff summability methods,? Proc. Amer. Math. Soc.,19, No. 1, 45?49 (1968). · Zbl 0153.08901 · doi:10.1090/S0002-9939-1968-0218787-1
[527] B. Kwee, ?Some Tauberian theorems for the logarithmic method of summability,? Can. J. Math.,20, No. 6, 1324?1331 (1968). · Zbl 0165.38201 · doi:10.4153/CJM-1968-132-3
[528] B. Kwee, ?Some theorems on the (A, logn) method of summation,? J. London Math. Soc.,1, No. 2, 323?330 (1969). · Zbl 0179.08901 · doi:10.1112/jlms/s2-1.1.323
[529] B. Kwee, ?On the general methods of summability,? J. London Math., Soc.,2, No. 1, 23?31 (1970). · Zbl 0187.01601 · doi:10.1112/jlms/s2-2.1.23
[530] B. Kwee, ?On generalized logarithmic methods of summation,? J. Math. Anal. Appl.,35, No. 1, 83?89 (1971). · Zbl 0218.40002 · doi:10.1016/0022-247X(71)90237-X
[531] B. Kwee, ?On generalized translated quasi-Cesàro summability,? Pacif. J. Math.,36, No. 3, 731?740 (1971). · Zbl 0216.38801 · doi:10.2140/pjm.1971.36.731
[532] B. Kwee, ?On absolute de la Vallée Poussin summability,? Pacif. J. Math.,42, No. 3, 689?692 (1972). · Zbl 0246.40005 · doi:10.2140/pjm.1972.42.689
[533] S. N. Lal, ?On products of summability methods and generalized Mercerian theorems,? Math. Stud.,30, Nos. 3?4, 131?142 (1963).
[534] S. N. Lal, ?On the absolute harmonic summability of the factored power series on its circle of convergence,? Indian J. Math.,5, No. 1, 55?66 (1963). · Zbl 0115.28301
[535] S. N. Lal, ?On the absolute Riesz summability factors of power series and Fourier series,? Bull. Acad. Polon. Sci. Sér. Sci. Math., Astron. Phys.,16, No. 4, 287?291 (1968).
[536] S. N. Lal, ?On the absolute summability factors of infinite series,? Matem. Vesn.,8, No. 2, 109?112 (1971).
[537] S. N. Lal and S. R. Singh, ?On the absolute summability factors in infinite series,? Bull. Acad. Polon. Sci. Sér. Sci. Math., Astron. Phys.,17, No. 11, 711?714 (1969). · Zbl 0193.36601
[538] M. G. Lazi?, ?On function (limitation) methods,? Matem. Vesn.,6, No. 4, 425?436 (1969).
[539] M. G. Lazi?, ?Necessary and sufficient conditions for a domain of a continuous method to contain all bounded sequences,? Matem. Vesn.,7, No. 2, 217?222 (1970).
[540] M. G. Lazi?, ?Perfection of continuous permanent methods,? Publs. Inst. Math.,11, 93?97 (1971).
[541] C. W. Leininger, ?Some properties of a generalized Hausdorff mean,? Proc. Amer. Math. Soc.,20, No. 1, 88?96 (1969). · Zbl 0167.33201 · doi:10.1090/S0002-9939-1969-0234163-0
[542] D. Leviatan, ?A generalized moment problem,? Israel J. Math.,5, No. 2, 97?103 (1967). · Zbl 0173.15005 · doi:10.1007/BF02771628
[543] D. Leviatan, ?Tauberian constants for generalized Hausdorff transformations,? J. London Math. Soc.,43, No. 2, 308?314 (1968). · Zbl 0153.38703 · doi:10.1112/jlms/s1-43.1.308
[544] D. Leviatan, ?Moment problems and quasi-Hausdorff transformations,? Can. Math. Bull.,11, No. 2, 225?236 (1968). · Zbl 0164.14603 · doi:10.4153/CMB-1968-026-7
[545] D. Leviatan, ?Some Tauberian theorems for quasi-Hausdorff transforms,? Math. Z.,108, No. 3, 213?222 (1969). · Zbl 0169.07101 · doi:10.1007/BF01112021
[546] D. Leviatan, ?Some Tauberian theorems concerning (S*,?) transformations,? Tôhoku Math. J.,21, No. 3, 389?405 (1969). · Zbl 0183.05501 · doi:10.2748/tmj/1178242950
[547] D. Leviatan, ?Absolute Tauberian conditions for absolute Hausdorff and quasi-Hausdorff methods,? Israel J. Math.,8, No. 2, 138?146 (1970). · Zbl 0199.39103 · doi:10.1007/BF02771308
[548] D. Leviatan, ?Tauberian estimates for the difference of Hausdorff transforms and of quasi-Hausdorff transforms,? J. London Math. Soc.,2, No. 1, 1?13 (1970). · Zbl 0185.30303 · doi:10.1112/jlms/s2-2.1.1
[549] D. Leviatan, ?An application of a convolution transform to the sequence-to-function analogs of Hausdorff transformations,? J. Anal. Math.,24, 173?189 (1971). · Zbl 0246.40006 · doi:10.1007/BF02790375
[550] D. Leviatan, ?Remarks on some Tauberian theorems of Meyer-König, Tietz and Stielglitz,? Proc. Amer. Math. Soc.,29, No. 1, 126?132 (1971). · Zbl 0215.17401
[551] D. Leviatan and L. Lorch, ?A characterization of totally regular [J,f(x)] transforms,? Proc. Amer. Math. Soc.,23, No. 2, 315?319 (1969). · Zbl 0184.08803
[552] D. Leviatan and L. Lorch, ?On the connectedness of the sets of limit points of certain transforms of bounded sequences,? Can. Math. Bull.,14, No. 2, 175?181 (1971). · Zbl 0212.41202 · doi:10.4153/CMB-1971-032-0
[553] N. Levinson, ?On the elementary character of Wiener’s general Tauberian theorem,? J. Math. Anal. Appl.,42, No. 2, 381?396 (1973). · Zbl 0256.40007 · doi:10.1016/0022-247X(73)90145-5
[554] J. Lindenstrauss, ?A remark concerning projections in summability domains,? Amer. Math. Month.,70, No. 9, 977?978 (1963). · Zbl 0133.00802 · doi:10.2307/2313059
[555] L. Lorch, ?Translativity for strong Borel summability,? Can. Math. Bull.,9, No. 5, 639?645 (1966). · Zbl 0145.28901 · doi:10.4153/CMB-1966-077-5
[556] L. Lorch and L. Moser, ?A remark on completely monotonic sequences with an application to summability,? Can. Math. Bull.,6, No. 2, 171?173 (1963). · Zbl 0122.30601 · doi:10.4153/CMB-1963-016-3
[557] G. G. Lorentz and K. Zeller, ?Strong and ordinary summability,? Tôhoku Math. J.,15, No. 4, 315?321 (1963). · Zbl 0185.13301 · doi:10.2748/tmj/1178243767
[558] G. G. Lorentz and K. Zeller, ?Abschnittslimitierbarkeit und der Satz von Hardy-Bohr,? Arch. Math.,15, No. 3, 208?213 (1964). · Zbl 0129.04301 · doi:10.1007/BF01589188
[559] G. G. Lorentz and K. Zeller, ?Summation of sequences and summation of series,? Proc. Amer. Math. Soc.,15, No. 5, 743?746 (1964). · Zbl 0125.03301 · doi:10.1090/S0002-9939-1964-0165280-7
[560] W. Luh, ?On the Hausdorff-limitability of {zn},? Manuscr. Math.,7, No. 4, 315?323 (1972). · Zbl 0239.40002 · doi:10.1007/BF01644070
[561] S. D. Luke, On Certain Generalized Taylor Transforms, Doctoral Dissertation, Univ. Pittsburgh (1968); Dissert. Abs.,B29, No. 10, 3830 (1969).
[562] S. D. Luke, ?The S(q, t) summability transform,? Trans. Nebr. Acad. Sci.,1, 168?178 (1972).
[563] J. S. MacNerney, ?Characterization of regular Hausdorff moment sequences,? Proc. Amer. Math. Soc.,15, No. 3, 366?368 (1964). · Zbl 0129.04402 · doi:10.1090/S0002-9939-1964-0168964-X
[564] M. S. Macphail, ?Remark on co-null matrices,? Can. Math. Bull.,8, No. 1, 105?107 (1965). · Zbl 0138.04002 · doi:10.4153/CMB-1965-013-2
[565] M. S. Macphail, ?Stirling summability of rapidly divergent series,? Mich. Math. J.,12, No. 1, 113?118 (1965). · Zbl 0127.02703 · doi:10.1307/mmj/1028999251
[566] I. J. Maddox, ?On Riesz summability factors,? Tôhoku Math. J.,14, No. 4, 431?435 (1962). · Zbl 0107.27803 · doi:10.2748/tmj/1178244079
[567] I. J. Maddox, ?On absolute Riesz summability factors,? Tôhoku Math. J.,15, No. 2, 116?120 (1963). · Zbl 0114.26803 · doi:10.2748/tmj/1178243838
[568] I. J. Maddox, ?On absolute Riesz summability factors. II,? Tôhoku Math. J.,16, No. 1, 60?71 (1964). · Zbl 0132.04402 · doi:10.2748/tmj/1178243732
[569] I. J. Maddox, ?A note on summability factor theorems,? Quart. J. Math.,15, No. 59, 208?216 (1964). · Zbl 0133.01103 · doi:10.1093/qmath/15.1.208
[570] I. J. Maddox, ?Some inclusion theorems,? Proc. Glasgow Math. Assoc.,6, No. 4, 161?168 (1964). · Zbl 0133.00803 · doi:10.1017/S204061850003495X
[571] I. J. Maddox, ?Matrix transformations of (C, ?1) summable series,? Proc. Kon. Ned. Akad. Wetensch.,A68, No. 1, 129?132 (1965); Indag. Math.,27, No. 1, 129?132 (1965). · Zbl 0128.28201 · doi:10.1016/S1385-7258(65)50016-0
[572] I. J. Maddox, ?Matrix transformations in a Banach space,? Proc. Kon. Ned. Akad. Wetensch.,A69, No. 1, 25?29 (1966); Indag. Math.,28, No. 1, 25?29 (1966). · Zbl 0143.35201 · doi:10.1016/S1385-7258(66)50005-1
[573] I. J. Maddox, ?Generalized Cesàro means of order ?1,? Proc. Glasgow Math. Assoc.,7, No. 3, 119?124 (1966). · Zbl 0136.35502 · doi:10.1017/S2040618500035292
[574] I. J. Maddox, ?Note on Riesz means,? Quart. J. Math.,17, No. 67, 263?268 (1966). · Zbl 0151.06201 · doi:10.1093/qmath/17.1.263
[575] I. J. Maddox, ?Toeplitz transformations and convergence in measure,? J. London Math. Soc.,41, No. 4, 733?736 (1966). · Zbl 0147.05802 · doi:10.1112/jlms/s1-41.1.733
[576] I. J. Maddox, ?On theorems of Steinhaus type,? J. London Math. Soc.,42, No. 2, 239?244 (1967). · Zbl 0145.28802 · doi:10.1112/jlms/s1-42.1.239
[577] I. J. Maddox, ?Certain matrix transformations and an analog of a theorem of Hardy and Littlewood,? J. London Math. Soc.,42, No. 4, 599?609 (1967). · Zbl 0163.07102 · doi:10.1112/jlms/s1-42.1.599
[578] I. J. Maddox, ?Spaces of strongly summable sequences,? Quart. J. Math.,18, No. 72, 345?355 (1967). · Zbl 0156.06602 · doi:10.1093/qmath/18.1.345
[579] I. J. Maddox, ?On Kuttner’s theorem,? J. London Math. Soc.,43, No. 2, 285?290 (1968). · Zbl 0155.38802 · doi:10.1112/jlms/s1-43.1.285
[580] I. J. Maddox, ?Matrix transformations in an incomplete space,? Can. J. Math.,20, No. 3, 727?734 (1968). · Zbl 0157.37802 · doi:10.4153/CJM-1968-071-0
[581] I. J. Maddox, ?Strong Cesàro means,? Rend. Circol. Mat. Palermo,17, No. 3, 356?360 (1968(1969). · Zbl 0198.08604 · doi:10.1007/BF02909633
[582] I. J. Maddox, ?Tauberian constants,? Bull. London Math. Soc.,1, No. 2, 193?200 (1969). · Zbl 0181.06202 · doi:10.1112/blms/1.2.193
[583] I. J. Maddox, ?A Tauberian theorem for subsequences,? Bull. London Math. Soc.,2, No. 1, 83?85 (1970). · Zbl 0208.08503 · doi:10.1112/blms/2.1.63
[584] P. F. Mah, Summability and Invariant Means on Semigroups, Doctoral Dissertation, Univ. Brit. Columbia (1970); Diss. Abs. Int.,B31, No. 11, 6754 (1971).
[585] P. F. Mah, ?Summability in amenable semigroups,? Trans. Amer. Math. Soc.,156, May, 391?403 (1971). · Zbl 0213.13502 · doi:10.1090/S0002-9947-1971-0275013-X
[586] P. F. Mah, ?Matrix summability in amenable semigroups,? Proc. Amer. Math. Soc.,36, No. 2, 414?420 (1972). · Zbl 0265.43011 · doi:10.1090/S0002-9939-1972-0313674-3
[587] S. Mandelbrojt, ?N. Weiner’s general Tauberians,? Bull. Amer. Math. Soc.,72, No. 1, Part 2, 48?51 (1966). · Zbl 0131.00510 · doi:10.1090/S0002-9904-1966-11461-1
[588] B. Marti?, ?Dva stava inkluzije jedne klase postupaka zhirljivosti,? Bilten Drusht. Matem. i. Fiz. HPM,13, 13?20 (1962).
[589] B. Marti? ?The mutual inclusion of S?,? methods of summation,? Publs. Inst. Math.,2(16), 93?98 (1962(1963)).
[590] B. Marti?, ?Eine zweiparametrige Klasse von Limitierungsverfahren und ihre Anwendungen,? Rada. Jugosl. Akad. Znan. i Imjetn. Od. Mat. Fiz. i Tehn. Nauke,9, No. 325, 161?163 (1962(1963)).
[591] B. Marti?, ?Note on the summation of a classical divergent series,? Vesn. Drushtva Matem. i Fiz. Sots. Rep. Srbiye,15, Nos. 1?4, 17?20 (1963).
[592] B. Marti?, ?On the \(\mathfrak{B}\) transformations of M. Bajraktarevi?,? Glasnik Mat.-Fiz. i Astron.,19, Nos. 3?4, 225?235 (1964).
[593] B. Marti?, ?Relations among KS(?) and certain other methods for evaluation of sequences and series,? Matem. Vesn.,1, No. 4, 346?347 (1964).
[594] B. Marti?, ?O jednoj op?toj klasi postupaka zbirljivosti,? Bilten Drusht. Matem. i Fiz., SRM,15, 5?17 (1964).
[595] B. Marti?, ?Cauchy product of two series,? Radovi. Nau?. Dru?t. SR BiH,25, 225?234 (1964).
[596] B. Marti?, ?O odnosima izmedu (\=N, 1/(n+1)), (R) i KS (?) postupaka zbirljivosti.,? Radovi. Nau? Dru?t. SR BiH,25, 251?257 (1964).
[597] B. Marti?, ?On some iterative methods of summability,? Matem. Vesn,2, No. 1, 80?83 (1965).
[598] B. Marti?, ?Neki stavovi o Zk i ?? transformacijama,? Bilten Drusht. Matem. i Fiz. SRM,16, 19?25 (1965).
[599] B. Marti?, ?O jednoj regularnoj trouglastoj matrici,? Radovi. Nau?. Dru?t. BiH,28, 121?133 (1965).
[600] B. Marti?, ?O zbirljivosti Dirichletovih redova i neke relacije neuporedivosti,? Radovi. Nau? Dru?t. BiH,28, 135?145 (1965).
[601] B. Marti?, ?Bele?ka o nekim relacijama neuporedivosti,? Bilten Drusht. Matem. i Fiz, SRM,17, 11?18 (1966).
[602] B. Marti?, ?On the ?? summability of a class of asymptotic series,? Publs. Inst. Math.,7, 185?190 (1967).
[603] B. Marti?, ?Some theorems concerning incomparability relations,? Glasn. Mat.,2, No. 1, 53?59 (1967).
[604] B. Marti?, ?On an incomparability relation,? Matem. Vesn.,4, No. 3, 304?306 (1967).
[605] B. Marti?, ?On a Mercerian theorem,? Glasn. Mat.,2, No. 1, 61?63 (1967).
[606] B. Marti?, ?Neki novi rezultati o [F, dn] i S?,?,? transformacijama,? Matem. Vesn.,6, No. 2, 215?219 (1969).
[607] B. Marti?, ?New applications of the theory of Karamata-Stirling method of summation,? Rad. Akad. Nauka i Umjetn. BiH, Od. Prirod. i Matem. Nauka,33, No. 10, 39?50 (1969).
[608] I. Marx, ?Remark concerning a nonlinear sequence-to-sequence transform,? J. Math. and Phys.,42, No. 4, 334?335 (1963). · Zbl 0128.28102 · doi:10.1002/sapm1963421334
[609] J. Mayer, ?Generalizations of consistency and absolute equivalence of matrix methods,? Port. Math.,24, Nos. 3?4, 163?167 (1965).
[610] S. M. Mazhar, ?A theorem on generalized absolute Riesz summability,? Ann. Scuola Norm. Super, Pisa. Sci. Fis. e Mat.,19, No. 4, 513?518 (1965). · Zbl 0137.26602
[611] S. M. Mazhar, ?On |C, 1|k summability factors of infinite series,? Acta Sci. Math.,27, Nos. 1?2, 67?70 (1966). · Zbl 0142.02601
[612] S. M. Mazhar, ?|\=N, pn| summability factors of infinite series,? Kodai Math. Semin. Repts.,18, No. 2, 96?100 (1966). · Zbl 0138.28301 · doi:10.2996/kmj/1138845190
[613] S. M. Mazhar, ?On the summability factors of infinite series,? Publs. Math.,13, Nos. 1?4, 229?236 (1966).
[614] S. M. Mazhar, ?On |C,? k summability factors of infinite series,? Bull. Cl. Sci. Acad. Roy. Belg.,57, No. 3, 275?286 (1971). · Zbl 0217.42101
[615] S. M. Mazhar, ?On the absolute summability factors of infinite series,? Tôhoku Math. J.,23, No. 3, 433?451 (1971). · Zbl 0227.40005 · doi:10.2748/tmj/1178242592
[616] S. M. Mazhar, ?Absolute Nörlund summability factors of infinite series,? J. London Math. Soc.,4, No. 3, 563?570 (1972). · Zbl 0229.40006 · doi:10.1112/jlms/s2-4.3.563
[617] S. M. Mazhar and A. H. Siddiqi, ?On the almost summability of a trigonometric sequence,? Acta Math. Acad. Sci. Hung.,20, Nos. 1?2, 21?24 (1969). · Zbl 0174.10106 · doi:10.1007/BF01894565
[618] J. Meder, ?Three theorems on a class of Nörlund means,? Colloq. Math.,16, 205?222 (1967). · Zbl 0146.08002
[619] J. Meder and Z. Zdrojewski, ?On a relation between some special methods of summation,? Colloq. Math.,19, No. 1, 131?142 (1968). · Zbl 0171.02105
[620] A. Meir, ?On the [F, dn]-transformations of A. Jakimovski,? Bull. Res. Council Israel,F10, No. 4, 165?187 (1962).
[621] A. Meir, ?Tauberian theorems,? Israel J. Math.,1, No. 1, 29?36 (1963). · Zbl 0139.29601 · doi:10.1007/BF02759798
[622] A. Meir, ?Tauberian constants for a family of transformations,? Ann. Math.,78, No. 3, 594?599 (1963). · Zbl 0178.39601 · doi:10.2307/1970544
[623] A. Meir, ?On two problems concerning the generalized Lototsky transforms,? Can. J. Math.,16, No. 2, 339?342 (1964). · Zbl 0132.04202 · doi:10.4153/CJM-1964-033-8
[624] A. Meir, ?Tauberian estimates concerning the regular Hausdorff and [J,f(x)] transformations,? Can. J. Math.,17, No. 2, 288?301 (1965). · Zbl 0128.28501 · doi:10.4153/CJM-1965-029-0
[625] A. Meir, ?Limit-distance of Hausdorff-transforms of Tauberian series,? J. London Math. Soc.,40, 295?302 (1965). · Zbl 0142.30803 · doi:10.1112/jlms/s1-40.1.295
[626] A. Meir, ?A further note on Lototsky-typetransformations,? Can. J. Math.,18, No. 1, 221?224 (1966). · Zbl 0134.28102 · doi:10.4153/CJM-1966-024-x
[627] A. Meir, ?An estimate for the difference of Hausdorff-transforms of Tauberian series,? J. London Math. Soc.,42, No. 2, 193?200 (1967). · Zbl 0158.05401 · doi:10.1112/jlms/s1-42.1.193
[628] A. Meir, ?An inclusion theorem for generalized Cesàro and Riesz means,? Can. J. Math.,20, No. 3, 735?738 (1968). · Zbl 0155.38901 · doi:10.4153/CJM-1968-072-8
[629] A. Meir, ?A new family of linear transformations,? Enscign. Math.,13, No. 4, 281?285 (1968).
[630] A. Meir and A. Sharma, ?A generalization of the S?-summation method,? Proc. Cambridge Phil. Soc.,67, No. 1, 61?66 (1970). · Zbl 0186.10801 · doi:10.1017/S0305004100057091
[631] L. C. Mejlbo, ?Om konvergente, uendelige raekker og deres sum,? Nord. Mat. Tidskr.,16, No. 3, 92?103 (1968).
[632] W. Meyer-König and H. Tietz, ?On Tauberian conditions of type o,? Bull. Amer. Math. Soc.,73, No. 6, 926?927 (1967). · Zbl 0173.06202 · doi:10.1090/S0002-9904-1967-11851-2
[633] W. Meyer-König and H. Tietz, ?Über die Limitierungsumkehrsätzevom typ o,? Stud. Math.,31, No. 3, 205?216 (1968). · Zbl 0169.07102
[634] W. Meyer-König and H. Tietz, ?Über Umkehrdebingungen in der Limitierungstheorie,? Arch. Math.,5, No. 4, 177?186 (1969). · Zbl 0237.40005
[635] W. Meyer-König and K. Zeller, ?Euler-Knopp- und Borel-Verfahren komplexer Ordnung,? Math. Z.,82, No. 5, 394?402 (1963). · Zbl 0128.06101 · doi:10.1007/BF01111537
[636] W. Meyer-König and K.Zeller., ?Vergleich des Taylorschen Summierungs-Verjahrens mit zeilenfiniten Verfahren,? Publs. Ramanujan Inst., No. 1, Ananda Rau Mem. Vol.,183?187 (1968?1969).
[637] W. Meisner, ?The convergence fields of Nörlund means,? Proc. London Math. Soc.,15, No. 3, 495?507 (1965). · Zbl 0131.05602 · doi:10.1112/plms/s3-15.1.495
[638] S. Minakshisundaram, ?Convexity theorem for absolute summability,? Proc. Nat. Inst. Sci. India,A28, No. 2, 347?351 (1962). · Zbl 0141.24903
[639] B. P. Mishra, ?Some theorems on strong summability,? Math. Z.,90, No. 4, 310?318 (1965). · Zbl 0128.28302 · doi:10.1007/BF01158570
[640] B. P. Mishra, ?Multiplication theorems on strongly summable series,? Proc. Amer. Math. Soc.,17, No. 5, 992?998 (1966). · Zbl 0143.27903 · doi:10.1090/S0002-9939-1966-0201869-6
[641] B. P. Mishra, ?Strong summability of infinite series on a scale of Abel type summability methods,? Proc. Cambridge Phil. Soc.,63, No. 1, 119?127 (1967). · Zbl 0152.05003 · doi:10.1017/S0305004100040950
[642] B. P. Mishra, ?Some theorems on absolute summability,? J. Indian Math. Soc.,31, No. 2, 69?79 (1967). · Zbl 0173.05902
[643] B. P. Mishra, ?Absolute summability of infinite series on a scale of Abel type summability methods,? Proc. Cambridge Phil. Soc.,64, No. 2, 377?387 (1968). · Zbl 0157.37902 · doi:10.1017/S0305004100042924
[644] B. P. Mishra, ?Corrections to ?Some theorems on strong summability?,? Math. Z.,106, No. 2, 158 (1968). · Zbl 0157.11303 · doi:10.1007/BF01110723
[645] B. P. Mishra, ?Some Tauberian theorems on a scale of Abel type summability methods,? Proc. Cambridge Phil. Soc.,68, No. 2, 401?414 (1970). · Zbl 0198.39704 · doi:10.1017/S0305004100046211
[646] B. P. Mishra, ?Theorems concerning infinite series on a scale of Abel type summability methods,? Acta Math. Acad. Sci. Hung.,23, Nos.3?4, 293?298 (1972). · Zbl 0257.40002 · doi:10.1007/BF01896948
[647] T. T. Moh, ?On a general Tauberian theorem,? Proc. Amer. Math. Soc.,36, No. 1, 167?172 (1972). · Zbl 0254.40014 · doi:10.1090/S0002-9939-1972-0316935-7
[648] R. N. Mohapatra, ?A note on summability factors,? J. Indian Math. Soc.,31, No. 4, 213?224 (1967(1968)). · Zbl 0185.13302
[649] R. N. Mohapatra, ?On absolute convergence factors,? Rend. Circolo Mat. Palermo,16, No. 3, 259?272 (1967(1968)). · Zbl 0187.01702 · doi:10.1007/BF02843797
[650] R. N. Mohapatra, ?On absolute Riesz summability factors,? J. Indian Math. Soc.,32, Nos. 3?4, 113?129 (1968(1969)). · Zbl 0197.34404
[651] R. N. Mohapatra, ?On absolute Riesz summability factors,? Rend. Mat.,4, No. 2, 259?273 (1971).
[652] R. N. Mohapatra, G. Das, and V. P. Srivastava, ?On absolute summability factors of infinite series and their application to Fourier series,? Proc. Cambridge Phil. Soc.,63, No. 1, 107?118 (1967). · Zbl 0151.07201 · doi:10.1017/S0305004100040949
[653] A. F. Monna, ?On the Banach-Steinhaus theorem,? Proc. Kon. Ned. Akad. Wetensch.,A66, No. 1, 121?131 (1963); Indag. Math.,25, No. 1, 121?131 (1963). · Zbl 0121.32703 · doi:10.1016/S1385-7258(63)50012-2
[654] R. H. Moritz, Results Pertaining to the Lototsky Method of Summability, Doctoral Dissertation, Univ. Pittsburgh (1964); Dissert. Abs.,26, No. 6, 3375 (1965).
[655] S. Mukhoti, ?A limitation theorem for Cesàro summable series,? Ill. J. Math.,14, No. 1, 66?69 (1970). · Zbl 0186.10701
[656] S. Mukhoti, ?Theorems on Cesàro summability of series,? Pacif. J. Math.,33, No. 2, 385?392 (1970). · Zbl 0198.39703 · doi:10.2140/pjm.1970.33.385
[657] S. Mukhoti, ?Theorems on Cesàro summability for fractional orders of series,? Bull. Calcutta Math. Soc.,63, No. 3, 125?133 (1971). · Zbl 0247.40005
[658] G. Müller, ?Sätze über Folgen auf kompakten Räumen,? Monatsh. Math.,67, No. 5, 436?451 (1963). · Zbl 0201.15602 · doi:10.1007/BF01295090
[659] Y. Nakamura, ?On a generalization of a certain theorem concerning the Cesàro summability,? Rept. Tokyo Univ. Fish., No. 4, 57?76 (1969).
[660] K. Nickel, ?Ein Permanenzsatz für nichtlineare Limitierungsverfahren,? Math. Z.92, No. 4, 307?313 (1966). · Zbl 0138.04001 · doi:10.1007/BF01112198
[661] T. Nishiura and D. Waterman, ?Reflexivity and summability,? Stud. Math.,23, No. 1, 53?57 (1963). · Zbl 0121.09402
[662] B. Nowak, ?A remark on the general theory of summability,? Ann. Pol. Math.,24, No. 3, 241?246 (1971). · Zbl 0217.42201
[663] W. Orlicz, ?On some spaces of strongly summable sequences,? Stud. Math.,22, No. 3, 331?336 (1963). · Zbl 0123.30204
[664] V. T. Oviedo, ?Methods of summation,? Bol. Mat. Costarric.,2, No. 2, 85?111 (1971).
[665] T. Pati, ?A second theorem of consistency for absolute summability by discrete Riesz means,? Kodai Math. Semin. Repts.,20, No. 4, 454?457 (1968). · Zbl 0172.33602 · doi:10.2996/kmj/1138845750
[666] A. Peiczy?ski, ?A remark on the preceding paper of I. Singer,? (From a letter to R. Sikorski), Stud. Math.,26, No. 1, 115?116 (1965).
[667] R. Pennacchi, ?Le trasformazioni razionali di una successione,? Calcolo,5, No. 1, 37?50 (1968). · Zbl 0195.06703 · doi:10.1007/BF02575564
[668] R. Pennacchi, ?Somma di serie numeriche mediante la trasformazione quadratica T2,2,? Calcolo,5, No. 1, 51?61 (1968). · Zbl 0195.06801 · doi:10.1007/BF02575565
[669] A. Peressini, ?Banach limits on vector lattices,? Stud. Math. (PRL),35, No. 2, 111?121 (1970). · Zbl 0206.11902
[670] A. Persson, ?Summation methods on locally compact spaces,? Medd. Lunds Univ. Mat. Semin.,18, 1?57 (1965).
[671] G. M. Petersen, ?Consistency of summation matrices for unbounded sequences,? Quart. J. Math,14, No. 55, 161?169 (1963). · Zbl 0137.03705 · doi:10.1093/qmath/14.1.161
[672] G. M. Petersen, ?On pairs of summability matrices,? Quart. J. Math.,16, No. 61, 72?76 (1965). · Zbl 0134.28104 · doi:10.1093/qmath/16.1.72
[673] G. M. Petersen, ?Extreme points for regular summability matrices,? Tôhoku Math. J.,18, No. 3, 255?258 (1966). · Zbl 0147.31802 · doi:10.2748/tmj/1178243414
[674] G. M. Petersen, Regular Matrix Transformation, McGraw-Hill, London (1966). · Zbl 0159.35401
[675] G. M. Petersen, ?Topology of summability sets,? Math. Z.,98, No. 2, 93?103 (1967). · Zbl 0152.25102 · doi:10.1007/BF01112719
[676] G. M. Petersen, ?Regular matrices and bounded sequences,? Jahresber. Dtsch. Math. Ver.,69, No. 3, 107?151 (1967). · Zbl 0145.28801
[677] G. M. Petersen, ?Singularities for matrices and sequences,? Math. Z.,103, No. 4, 268?275 (1968). · Zbl 0156.28501 · doi:10.1007/BF01114993
[678] G. M. Petersen, ?Factor sequences for summability matrices,? Math. Z.,112, No. 5, 389?392 (1969). · Zbl 0192.41702 · doi:10.1007/BF01110233
[679] G. M. Petersen ?The algebra of bounded sequences as factor sequences,? Proc. Kon. Ned. Akad. Wetensch.,A75, No. 4, 345?349 (1972); Indag. Math.,34, No. 4, 345?349 (1972). · Zbl 0255.40005 · doi:10.1016/1385-7258(72)90049-2
[680] G. M. Petersen and A. Zame, ?Summability properties for the distribution of sequences,? Monatsh. Math.,73, No. 2, 147?158 (1969). · Zbl 0176.32901 · doi:10.1007/BF01303663
[681] G. E. Petersen, Convergence and Summability Factors, Doctoral Dissertation, Univ. Utah (1965); Bull. Univ. Utah,58, No. 21, 207?208 (1967).
[682] G. E. Peterson, ?Summability factors,? Proc. London Math. Soc.,19, No. 2, 341?356 (1969). · Zbl 0169.07004 · doi:10.1112/plms/s3-19.2.341
[683] G. E. Peterson, ?On consistency with respect to functionals ofl-l transformations,? Mich. Math. J.,16, No. 3, 281?287 (1969). · Zbl 0184.15803 · doi:10.1307/mmj/1029000273
[684] A. Peyerimhoff, ?Über einen absoluten Mittelwertsatz und Konvexitätssatz für Rieszsche,? Mittel. Math. Ann.,157, No. 1, 42?64 (1964). · Zbl 0133.01001 · doi:10.1007/BF01362666
[685] A. Peyerimhoff, ?On discontinuous Riesz means,? Indian J. Math.,6, No. 2, 69?91 (1964). · Zbl 0131.05603
[686] A. Peyerimhoff, ?Über einen Vergleichssatz für Nörlundverfahren,? Arch. Math.,18, No. 6, 633?636 (1967). · Zbl 0156.06701 · doi:10.1007/BF01898873
[687] A. Peyerimhoff, ?On the equivalence of continuous and discontinuous Riesz means,? Proc. London Math. Soc.,18, No. 2, 349?366 (1968). · Zbl 0155.38803 · doi:10.1112/plms/s3-18.2.349
[688] A. Peyerimhoff, Lectures on Summability, Springer, Berlin (1969). · Zbl 0182.08401
[689] H. R. Pitt, Tauberian Theorems, Oxford Univ. Press, London (1963).
[690] Z. Polniakowski, ?On some properties of Riesz means,? Roczn. Polsk. Towarz. Mat., Ser. 1,11, No. 1, 129?140 (1967). · Zbl 0172.07501
[691] R. E. Powell, Generalizations of the Taylor Summability Transforms, Doctoral Dissertation, Lehigh Univ. (1966); Dissert. Abs.,B27, No. 5, 1550 (1966).
[692] R. E. Powell, ?The L(r, t) summability transform,? Can. J. Math.,18, No. 6, 1251?1260 (1966). · Zbl 0143.28301 · doi:10.4153/CJM-1966-123-3
[693] B. N. Prasad, ?Recent researches in the absolute summability of infinite series and their applications,? Fifty-third Indian Science Congress, Chandigarh, 1966, Allahabad Math. Soc., Allahabad (1966).
[694] G. Prasad, ?On strong Nörlund summability,? Univ. Roorkee Res. J.,9, Nos. 1?2, Part 8, 87?98 (1966).
[695] M. B. Prasad, ?On the absolute Cesàro summability factors of infinite series,? Rend. Circolo Mat. Palermo,14, No. 2, 189?194 (1965). · Zbl 0152.05101 · doi:10.1007/BF02847718
[696] D. L. Prullage, ?Summability in topological groups,? Math. Z.,96, No. 4, 259?278 (1967). · Zbl 0142.02401 · doi:10.1007/BF01123653
[697] D. L. Prullage, ?Summability in topological groups. II,? Math. Z.,103, No. 2, 129?138 (1968). · Zbl 0153.38701 · doi:10.1007/BF01110625
[698] D. L. Prullage, ?Summability in topological groups. III,? J. Anal. Math.,22, 221?231 (1969). · Zbl 0182.08501 · doi:10.1007/BF02786791
[699] D. L. Prullage, ?Summability in topological groups. IV. Convergence fields,? Tôhoku Math. J.,21, No. 2, 159?169 (1969). · Zbl 0192.41601 · doi:10.2748/tmj/1178242989
[700] C. T. Rajagopal, ?Tauberian theorems on oscillation for the (?, ?)-method,? Publs. Ramanujan Inst., No. 1, Ananda Rau Mem. Vol., 247?267 (1968?1969);
[701] C. T. Rajagopal, ?Gap Tauberian theorems on oscillation for the Borel method (B),? J. London Math. Soc.,44, No. 1, 41?51 (1969). · Zbl 0159.08203 · doi:10.1112/jlms/s1-44.1.41
[702] S. Ram, ?On the absolute Nörlund summability factors of infinite series,? Indian J. Pure Appl. Math.,2, No. 2, 275?282 (1971). · Zbl 0222.40003
[703] M. S. Ramanujan, ?On the multiplication of series,? Amer. Math. Month.,70, No. 2, 190?192 (1963). · Zbl 0133.30901 · doi:10.2307/2312893
[704] M. S. Ramanujan, ?On the Sonnenschein methods of summability,? Proc. Japan Acad.,39, No. 7, 432?434 (1963). · Zbl 0185.13402 · doi:10.3792/pja/1195522993
[705] M. S. Ramanujan, ?Generalized Kojima-Toeplitz matrices in certain linear topological spaces,? Math. Ann.,159, No. 5, 365?373 (1965). · Zbl 0139.08303 · doi:10.1007/BF01362772
[706] M. S. Rangachari, ?Tauberian theorems for Cesàro sums,? Colloq. Math.,11, No. 1, 101?108 (1963). · Zbl 0178.39602
[707] M. S. Rangachari, ?Tauberian theorems for Cesàro sums (Addendum and Corrigendum),? Colloq. Math.,20, No. 2, 273?276 (1969). · Zbl 0191.35205
[708] M. S. Rangachari, ?On some generalizations of Riemann summability,? Math. Z.,88, No. 2, 166?183 (1965). · Zbl 0178.39402 · doi:10.1007/BF01112097
[709] M. S. Rangachari, ?On some generalizations of Riemann summability, addendum,? Math. Z.,91, No. 4, 343?347 (1966). · Zbl 0192.15401 · doi:10.1007/BF01111234
[710] M. S. Rangachari, ?A Tauberian theorem for Bessel summability,? Math. Z.,102, No. 3, 245?252 (1967). · Zbl 0161.25102 · doi:10.1007/BF01112443
[711] M. S. Rangachari, ?On the relation of Cesàro summability to Riemann-Cesàro summability,? Math. Stud.,35, Nos. 1?4, 133?139 (1967(1969)).
[712] M. S. Rangachari, ?On gap Tauberian theorems for Abel, Borel and Lambert summabilities,? Publs. Ramanujan Inst., No. 1, Ananda Rau Mem. Vol., 269?281 (1968?1969).
[713] M. S. Rangachari and Y. Sitaraman, ?Tauberian theorems for logarithmic summability (L),? Tôhoku Math. J.,16, No. 3, 257?269 (1964). · Zbl 0129.04501 · doi:10.2748/tmj/1178243672
[714] M. S. Rangachari and V. K. Srinivasan, ?Matrix transformations in non-archimedian fields,? Proc. Kon. Ned. Akad. Wetensch.,A67, No. 4, 422?429 (1964); Indag. Math.,26, No. 4, 422?429 (1964). · Zbl 0127.28505 · doi:10.1016/S1385-7258(64)50048-7
[715] J. S. Ratti, ?On high indices theorems,? Proc. Amer. Math. Soc.,17, No. 5, 1001?1006 (1966). · Zbl 0143.27904 · doi:10.1090/S0002-9939-1966-0199594-3
[716] J. S. Ratti, ?Tauberian theorems for absolute summability,? Proc. Amer. Math. Soc.,18, No. 5, 775?781 (1967). · Zbl 0156.28601 · doi:10.1090/S0002-9939-1967-0216202-4
[717] J. S. Ratti, ?On strong Riesz summability factors of infinite series. I,? Proc. Amer. Math. Soc.,18, No. 6, 959?966 (1967). · Zbl 0171.02104 · doi:10.1090/S0002-9939-1967-0218783-3
[718] J. S. Ratti, ?On a relation between absolute Abel and absolute Riesz summability,? Proc. Amer. Math. Soc.,21, No. 1, 57?62 (1969). · Zbl 0183.05401
[719] M. Reeken, ?Summability methods in perturbation theory,? J. Math. Phys.,11, No. 3, 822?824 (1970). · Zbl 0208.38802 · doi:10.1063/1.1665217
[720] B. E. Rhoades, ?Hausdorff summability methods, addendum,? Trans. Amer. Math. Soc.,106, No. 2, 254?258 (1963). · Zbl 0137.03801 · doi:10.1090/S0002-9947-1963-0144106-5
[721] B. E. Rhoades, ?Some Hausdorff matrices not of type M,? Proc. Amer, Math. Soc.,15, No. 3, 361?365 (1964). · Zbl 0125.30901 · doi:10.1090/S0002-9939-1964-0161070-X
[722] B. E. Rhoades, ?On the total inclusion for Nörlund methods of summability,? Math. Z.,96, No. 3, 183?188 (1967). · Zbl 0148.03703 · doi:10.1007/BF01124075
[723] B. E. Rhoades, ?On the total inclusion for Nörlund methods of summability. II,? Math. Z.,113, No. 2, 171?172 (1970). · Zbl 0182.08503 · doi:10.1007/BF01141103
[724] B. E. Rhoades, ?Size of convergence domains for known Hausdorff prime matrices,? J. Math. Anal. Appl.,19, No. 3, 457?468 (1967). · Zbl 0163.07104 · doi:10.1016/0022-247X(67)90004-2
[725] B. E. Rhoades, ?Triangular summability methods and the boundary of the maximal group,? Math. Z.,105, No. 4, 284?290 (1968). · Zbl 0179.08801 · doi:10.1007/BF01125969
[726] B. E. Rhoades, ?Type M for quasi-Hausdorff matrices,? Proc. Cambridge Phil. Soc.,68, No. 3, 601?604 (1970). · Zbl 0201.39202 · doi:10.1017/S0305004100076581
[727] H.-E., Richert and P. Srivastava, ?A convexity theorem for strong Riesz summability,? Proc. London Math. Soc.,18, No. 2, 367?384 (1968). · Zbl 0159.36302 · doi:10.1112/plms/s3-18.2.367
[728] W. W. Rogosinski and H. P. Rogosinski, Jr., ?An elementary companion to a theorem of J. Mercer,? J. Anal. Math.,14, 311?322 (1965). · Zbl 0129.04403 · doi:10.1007/BF02806398
[729] W. H. Ruckle, ?An abstract concept of the sum of a numerical series,? Can. J. Math.,22, No. 4, 863?874 (1970). · Zbl 0201.15702 · doi:10.4153/CJM-1970-098-5
[730] D. C. Russell, ?On generalized Cesàro means of integral order,? Tôhoku Math. J.,17, No. 4, 410?442 (1965). · Zbl 0134.28202 · doi:10.2748/tmj/1178243508
[731] D. C. Russell, ?Note on convergence factors,? Tôhoku Math. J.,18, No. 4, 414?428 (1966). · Zbl 0145.29001 · doi:10.2748/tmj/1178243384
[732] D. C. Russell, ?On generalized Cesàro means of integral order, Corrigenda,? Tôhoku Math. J.,18, No. 4, 454?455 (1966). · Zbl 0143.28001 · doi:10.2748/tmj/1178243386
[733] D. C. Russell, ?On a summability factors theorem for Riesz means,? J. London Math. Soc.,43, No. 2, 315?320 (1968). · Zbl 0155.10702 · doi:10.1112/jlms/s1-43.1.315
[734] D. C. Russell, ?Inclusion theorems for section-bounded matrix transformations,? Math. Z.,113, No. 4, 255?265 (1970). · Zbl 0188.36501 · doi:10.1007/BF01110327
[735] D. C. Russell, ?Summability methods which include the Riesz typical means. I,? Proc. Cambridge Phil. Soc.,69, No. 1, 99?106 (1971). · Zbl 0212.08902 · doi:10.1017/S0305004100046466
[736] D. C. Russell, ?Summability methods which include the Riesz typical means. II,? Proc. Cambridge Phil. Soc.,69, No. 2, 297?200 (1971). · Zbl 0212.08903 · doi:10.1017/S0305004100046661
[737] H. Sakata, ?Tauberian theorems for Cesàro sums. I,? Proc. Japan Acad.,41, No. 7, 532?534 (1965). · Zbl 0151.06002 · doi:10.3792/pja/1195522334
[738] H. Sakata, ?Tauberian theorems for Riesz means,? Mem. Def. Acad.,5, No. 4, 335?340 (1966). · Zbl 0178.05801
[739] H. Sakata, ?On a Tauberian theorem for strong Rieszian summability,? Mem. Def. Acad.,6, No. 4, 435?442 (1967). · Zbl 0194.08902
[740] J. L. R. San, ?The uniqueness problem in the theory of numerical divergent series and formal laws of calculus. I,? Collect. Math.,14, No. 3, 235?255 (1962). · Zbl 0128.10503
[741] J. L. R. San, ?The uniqueness problem in the theory of numerical divergent series and formal laws of calculus. II,? Collect. Math.15, Nos. 1?2, 23?70 (1963). · Zbl 0132.04003
[742] W. L. Sargent, ?On sectionally bounded BK-spaces,? Math. Z.,83, No. 1, 57?66 (1964). · Zbl 0172.39701 · doi:10.1007/BF01111108
[743] P. T. Schaefer, On Summability Methods Proposed by Fekete, Doctoral Dissertation, Univ. Pittsburgh (1963); Dissert. Abs.,25, No. 11, 6664?6665 (1965).
[744] P. T. Schaefer, ?Core theorems for coregular matrices,? Ill. J. Math.,9, No. 2, 207?211 (1965). · Zbl 0128.28103
[745] P. T. Schaefer, ?Generalized Fekete means,? Trans. Amer. Math. Soc.,120, No. 1, 24?36 (1965). · doi:10.1090/S0002-9947-1965-0181851-1
[746] P. T. Schaefer, ?Total regularity of matrix transformations,? Bull. Soc Math. Belg.,20, No. 4, 413?420 (1968). · Zbl 0174.35102
[747] P. T. Schaefer, ?Almost convergent and almost summable sequences,? Proc. Amer. Math. Soc.,20, No. 1, 51?54 (1969). · Zbl 0165.07102 · doi:10.1090/S0002-9939-1969-0235340-5
[748] P. T. Schaefer, ?Matrix transformations of almost convergent sequences,? Math. Z.,112, No. 5, 321?325 (1969). · Zbl 0181.33501 · doi:10.1007/BF01110226
[749] P. T. Schaefer, ?Matrix transformations of almost convergent sequences. II,? Math. Z.,120, No. 4, 363?364 (1971). · Zbl 0208.08401 · doi:10.1007/BF01110002
[750] P. T. Schaefer, ?Infinite matrices and invariant means,? Proc. Amer. Math. Soc.,36, No. 1, 104?110 (1972). · Zbl 0255.40003 · doi:10.1090/S0002-9939-1972-0306763-0
[751] K. Schaper, ?On discontinuous Riesz means of integral order,? J. London Math. Soc.,3, No. 4, 588?596 (1971). · Zbl 0214.07701 · doi:10.1112/jlms/s2-3.4.588
[752] L. Schmetterer, ?Über ein Problem der stochastischen Approximation und ein Matrixsummierungs-verfahren für Zahlenfolgen,? Metrika14, Nos. 2?3, 273?276 (1969). · Zbl 0186.51703 · doi:10.1007/BF02613655
[753] S. L. Segal, ?Summability by Dirichlet convolutions,? Proc. Cambridge Phil. Soc.,63, No. 2, 393?400 (1967). · doi:10.1017/S0305004100041311
[754] S. L. Segal, ?Tauberian theorems for (D, h (n))-summability,? J. London Math. Soc.,44, No. 1, 163?168 (1969). · Zbl 0172.07503 · doi:10.1112/jlms/s1-44.1.163
[755] J. J. Sember, ?A note on conull FK spaces and variation matrices,? Math. Z., 108, No. 1, 1?6 (1968). · Zbl 0165.38103 · doi:10.1007/BF01110450
[756] J. J. Sember, ?The associative part of a convergence domain is invariant,? Can. Math. Bull.,13, No. 1, 147?148 (1970). · Zbl 0192.41602 · doi:10.4153/CMB-1970-033-2
[757] J. J. Sember, ?Summability matrices as compact-like operators,? J. London Math. Soc.,2, No. 3, 530?534 (1970). · Zbl 0199.11302 · doi:10.1112/jlms/2.Part_3.530
[758] M. Sen, ?Extension of a theorem of Hyslop on absolute Cesàro summability,? Proc. Japan Acad.,40, No. 3, 183?187 (1964). · Zbl 0127.02801 · doi:10.3792/pja/1195522801
[759] E. S. Shapiro, Properties of the Lototsky Method of Summability, Doctoral Dissertation, Univ. Pittsburgh (1962); Dissert. Abs.,23, No. 6, 2155 (1962).
[760] H. S. Shapiro, ?A remark concerning Littlewood’s Tauberian theorem,? Proc. Amer. Math. Soc.,16, No. 2, 258?259 (1965). · Zbl 0144.05501
[761] N. K. Sharma, Spectral Aspects of Summability Methods, Doctoral Dissertation, Indiana Univ. (1971); Diss. Abs. Int.,B32, No. 8, 4742 (1972).
[762] B. L. R. Shawyer, ?Theorems on strong Riesz summability factors,? Proc. Edinburgh Math. Soc.,15, No. 1, 19?27 (1966). · Zbl 0152.25101 · doi:10.1017/S0013091500013134
[763] B. L. R. Shawyer, ?Some relations between strong and ordinary Borel-type methods of summability,? Math. Z.,109, No. 2, 115?120 (1969). · Zbl 0172.33701 · doi:10.1007/BF01111243
[764] B. L. R. Shawyer, ?On the relation between the Abel and Borel-type methods of summability,? Proc Amer. Math. Soc.,22, No. 1, 15?19 (1969). · Zbl 0175.34703
[765] B. L. R. Shawyer, ?General absolute Borel-type methods,? J. Reine und Angew. Math.,245, 81?90 (1970). · Zbl 0202.34401
[766] B. L. R. Shawyer and G. S. Yang, ?On the relation between the Abel-type and Borel-type methods of summability,? Proc. Amer. Math. Soc.,26, No. 2, 323?328 (1970). · Zbl 0198.08603 · doi:10.1090/S0002-9939-1970-0264276-7
[767] B. L. R. Shawyer and G. S. Yang, ?Tauberian relations between the Abel-type and the Borel-type methods of summability,? Manuscr. Math.,5, No. 4, 341?357 (1971). · Zbl 0222.40002 · doi:10.1007/BF01367769
[768] S. Sherif, ?Tauberian constants for th3 Riesz transforms of different orders,? Math. Z.,82, No. 4, 283?298 (1963). · Zbl 0115.27601 · doi:10.1007/BF01111396
[769] S. Sherif, ?Tauberian classes and Tauberian theorems,? Quart. J. Math.,15, No. 60, 303?308 (1964). · Zbl 0173.06003 · doi:10.1093/qmath/15.1.303
[770] S. Sherif, ?Tauberian constants for general triangular matrices and certain special types of Hausdorff means,? Math. Z.,89, No. 4, 312?323 (1965). · Zbl 0128.28405 · doi:10.1007/BF01112163
[771] S. Sherif, ?A Tauberian constant for the (S,? n+1) transformation,? Tôhoku Math. J.,19, No. 2, 110?125 (1967). · Zbl 0162.08202 · doi:10.2748/tmj/1178243311
[772] S. Sherif, ?A Tauberian relation between the Borel and the Lototsky transforms of series,? Pacif. J. Math.,27, No. 1, 145?154 (1968). · Zbl 0175.05702 · doi:10.2140/pjm.1968.27.145
[773] S. Sherif, ?Absolute Tauberian constants for Cesàro means,? Trans. Amer. Math. Soc168, June, 233?241 (1972). · Zbl 0236.40006
[774] D. L. Sherry, On a Class of Finite and Related Nörlund Methods of Summability, Doctoral Dissertation, Univ. Pittsburgh (1967); Dissert. Abs.,B28, No. 4, 1620 (1967).
[775] D. L. Sherry, ?A generalization of summability-(Z, p) of Silverman and Szász,? Proc. Edinburgh Math. Soc.,17, No. 1, 53?57 (1970). · Zbl 0199.39102 · doi:10.1017/S0013091500009184
[776] J. A. Siddiqi, ?Infinite matrices summing every almost periodic sequence,? Pacif. J. Math.,39, No. 1, 235?251 (1971). · Zbl 0229.42005 · doi:10.2140/pjm.1971.39.235
[777] I. Singer, ?A remark on reflexivity and summability,? Stud. Math. (PRL),26, No. 1, 113?114 (1965).
[778] S. R. Singh, ?On the absolute Riesz summability factors of infinite series,? Matem. Vesn.,5, No. 3, 311?312 (1968).
[779] S. R. Singh, ?On the absolute Nörlund summability factors of infinite series,? Proc. Amer. Math. Soc.,25, No. 3, 684?689 (1970). · Zbl 0194.08804
[780] Y. Sitaraman, ?On the Tauberian constant for summability (L),? J. Indian Math. Soc.,29, No. 3, 143?154 (1965). · Zbl 0141.25001
[781] Y. Sitaraman, ?A note on logarithmic summability (L),? Proc. Edinburgh Math. Soc.,15, No. 1, 47?55 (1966). · Zbl 0141.24904 · doi:10.1017/S0013091500013183
[782] Y. Sitaraman, ?On Tauberian theorems for the S?-method of summability,? Math. Z.,95, No. 1, 34?49 (1967). · Zbl 0162.08103 · doi:10.1007/BF01117530
[783] Y. Sitaraman, ?Tauberian theorems for ?infinite? logarithmic summability (L),? Monatsh. Math.,71, No. 5, 452?460 (1967). · Zbl 0156.28602 · doi:10.1007/BF01295137
[784] Y. Sitaraman, ?Addendum to ?On Tauberian theorems for the S?-method of summability?,? Math. Z.,106, No. 2, 153?157 (1968). · Zbl 0162.08103 · doi:10.1007/BF01110722
[785] H. B. Skerry, On a Generalization of the Lototsky Summability Method, Doctoral Dissertation, Mich. State Univ. (1967); Dissert. Abs.,B28, No. 10, 4208 (1968).
[786] H. B. Skerry, ?An inclusion theorem for generalized Lototsky summability methods,? J. Anal. Math.,25, 203?216 (1972). · Zbl 0247.40003 · doi:10.1007/BF02790038
[787] F. Skof, ?Sull’attenuazione delle condizioni tauberiane,? Atti Accad. Naz. Linzei. Rend. Cl. Sci. Fis., Mat. e Natur.,35, No. 6, 466?468 (1963). · Zbl 0145.30004
[788] W. T. Sledd, ?Regularity conditions for Karamata matrices,? J. London Math. Soc.,38, No. 1, 105?107 (1963). · Zbl 0118.28703 · doi:10.1112/jlms/s1-38.1.105
[789] W. T. Sledd, ?On summability of dilutions,? J. London Math. Soc.,1, No. 2, 371?374 (1969). · Zbl 0179.08902 · doi:10.1112/jlms/s2-1.1.371
[790] D. R. Smart, ?On o-Tauberian theorems,? Quart. J. Math.,10, No. 38, 140?144 (1959). · Zbl 0092.05603 · doi:10.1093/qmath/10.1.140
[791] G. Smith, On the (f, dn) Method of Summability, Doctoral Dissertation, Univ. Alabama (1963); Dissert. Abs.,24, No. 10, 4218 (1964).
[792] G. Smith, ?On the (f, dn)-method of summability,? Can. J. Math.,17, No. 3, 506?526 (1965). · Zbl 0132.28903 · doi:10.4153/CJM-1965-051-1
[793] A. K. Snyder, ?On a definition for conull and coregular FK spaces,? Notices Amer. Math. Soc.,10, 183 (1963).
[794] A. K. Snyder, ?Conull and coregular FK spaces,? Math. Z., 90, No. 5, 376?381 (1965). · Zbl 0132.08703 · doi:10.1007/BF01112357
[795] A. K. Snyder, Summability of Continuous Functions on Countable Spaces; A Classification of FK Spaces, Doctoral Dissertation, Lehigh Univ. (1965); Dissert. Abs.,26, No. 5, 2783?2784 (1965).
[796] A. K. Snyder and A. Wilansky, ?Non-replaceable matrices,? Math. Z.,129, No. 1, 21?23 (1972). · Zbl 0239.40004 · doi:10.1007/BF01229537
[797] V. K. Srinivasan, ?On certain summation processes in the p-adic field,? Proc. Kon. Ned. Akad. Wetensch.,A68, No. 2, 319?325 (1965); Indag. Math.,27, No. 2, 319?325 (1965). · doi:10.1016/S1385-7258(65)50036-6
[798] P. Srivastava, ?On strong summability of infinite series,? Math. Stud.,31, Nos. 3?4, 187?192 (1963(1964)).
[799] V. P. Srivastava, ?The absolute Cesàro summability factors of infinite series,? Matematiche,20, No. 2, 198?210 (1965).
[800] V. P. Srivastava, ?Extension of a theorem of Sunouchi,? Proc. Cambridge Phil. Soc.,65, No. 2, 489?493 (1969). · Zbl 0179.08802 · doi:10.1017/S0305004100044492
[801] V. P. Srivastava, R. N. Mohapatra, and G. Das, ?On [R, logn, 1]-summability factors of power series on its circle of convergence,? Math. Z.,90, No. 4, 319?324 (1965). · Zbl 0128.28402 · doi:10.1007/BF01158571
[802] F. ?t?pánek, ?A Tauber’s theorem for (J, pn) summability,? Monatsh. Math.70, No. 3, 256?260 (1966). · Zbl 0143.07804 · doi:10.1007/BF01305307
[803] F. ?t?pánek, ?Remark on the product of Leibnitz series,? Casop. P?stov. Mat.,92, No. 3, 351?355 (1967).
[804] M. Stieglitz, ?Über ausgezeichnete Tauber-Matrizen,? Arch. Math.,5, No. 4, 227?233 (1969). · Zbl 0234.40011
[805] M. Stieglitz, ?Die allgemeine Form der o-Tauber-Bedingung für das Euler-Knopp- und Borel-Verfahren,? J. Reine und Angew. Math.,246, 172?179 (1971). · Zbl 0208.08502
[806] M. Stieglitz, ?Matrixtransformationen von unvollständigen Folgenräumen,? Math. Z.,133, No. 2, 129?132 (1973). · Zbl 0251.46017 · doi:10.1007/BF01237899
[807] F. Strasser, Über die Verträglichkeit der Verfahren Ep, Bq und S? der Limitierungstheorie, Diss. Dokt. Naturwiss. Techn. Hochschule Stuttgart (1967). · Zbl 0208.33001
[808] L. Sucheston, ?Banach limits,? Amer. Math. Month.,74, No. 3, 308?311 (1967). · Zbl 0148.12202 · doi:10.2307/2316038
[809] P. Sziisz, ?On a theorem of Buck and Pollard,? Z. Wahrcheinlichkeitstheor. Verw. Geb.,11, No. 1, 39?40 (1968). · Zbl 0165.38101 · doi:10.1007/BF00538384
[810] A. Takahashi and C. Takahashi, ?A method of summation,? Rev. Colomb. Mat.,2, No. 1, 29?44 (1968).
[811] ?.-C. Tang, ?A theorem on Riesz summability (R,?, 2) on Banach space,? Compos. Math.,17, No. 2, 167?171 (1966).
[812] B. Thorpe, ?An inclusion theorem and consistency of real regular Nörlund methods of summability,? J. London Math. Soc.,5, No. 3, 519?525 (1972). · Zbl 0242.40003 · doi:10.1112/jlms/s2-5.3.519
[813] H. Tietz, Über das Summierungsverfahren von Le Roy, Diss. Dokt Naturwiss. Techn. Hochschule Stuttgart (1966). · Zbl 0155.39101
[814] H. Tietz, ?Umkehrsätze für das Summierungsverfahren von Le Roy,? Math. Z.,103, No. 3, 201?218 (1968). · Zbl 0155.39101 · doi:10.1007/BF01111039
[815] H. Tietz, ?Tauber-Konstanten für die Verfahren C?, A? und L. I,? Proc. Japan Acad.,45, No. 6, 473?477 (1969). · Zbl 0179.36101 · doi:10.3792/pja/1195520728
[816] H. Tietz, ?Tauber-Konstanten für die Verfahren C?, A? und L. II,? Proc. Japan Acad.,45, No. 6, 478?483 (1969). · Zbl 0179.36101 · doi:10.3792/pja/1195520729
[817] H. Tietz, ?Über absolute Tauber-Bedingungen,? Math. Z.,13, No. 2, 136?144 (1970). · Zbl 0175.34801
[818] H. Tietz, ?Über Tauber-Konstanten und eine Frage von Jakimovski,? Isr. J. Math.,8, No. 2, 147?154 (1970). · Zbl 0202.05604 · doi:10.1007/BF02771309
[819] H. Tietz, ?Negative resultate über Tauber-Bedingungen,? Monatsh. Math.,75, No. 1, 69?78 (1971). · Zbl 0208.33103 · doi:10.1007/BF01305980
[820] H. Tietz, Permanenz- und Taubersätze für Limitierungsverfahren bei Zugrundelegung des Begriffs der p-Konvergenz, Diss. Lehrbefugnis (Venia Legendi) Fach. Math. Univ. Stuttgart (1971).
[821] H. Tietz, ?Permanenz- und Taubersätze bei pV-Summierung,? J. Reine und Angew. Math.,260, 151?177 (1973). · Zbl 0257.40004
[822] N. Tripathy, ?On products of summability methods,? Math. Stud.,39, Nos. 1?4, 4?12 (1971).
[823] R. R. Tucker, ?Remark concerning a paper by Imanuel Marx,? J. Math. and Phys.,45, No. 2, 233?234 (1966). · Zbl 0143.28402 · doi:10.1002/sapm1966451233
[824] R. R. Tucker, ?The ?2-process and related topics,? Pacif. J. Math.,22, No. 2, 349?359 (1967). · Zbl 0166.06702 · doi:10.2140/pjm.1967.22.349
[825] R. R. Tucker, ?The ?2-process and related topics. II,? Pacif. J. Math.,28, No. 2, 455?463 (1969). · Zbl 0169.07002 · doi:10.2140/pjm.1969.28.455
[826] G. Tusnády, ?On the sequence of generalized partial sums of a series,? Stud. Sci. Math. Hung.,2, Nos. 3?4, 431?434 (1967). · Zbl 0153.38702
[827] J. Tzimbalario, ?On a question posed by D. Leviatan and L. Lorch,? Can. Math. Bull.,15, No. 3, 453 (1972). · Zbl 0243.40006 · doi:10.4153/CMB-1972-083-5
[828] O. P. Varshney, ?On Iyengar!s Tauberian theorem for Nörlund summability,? Tôhoku Math. J.,16, No. 1, 105?110 (1964). · Zbl 0133.01302 · doi:10.2748/tmj/1178243736
[829] O. P. Varshney, ?On a relation between harmonic summability and Lebesgue summability,? Riv. Mat. Univ. Parma,6, 273?281 (1965). · Zbl 0178.05703
[830] O. P. Varshney and G. Prasad, ?On a Tauberian theorem for absolute harmonic summability,? Riv. Mat. Univ. Parma,65, No. 1, 93?99 (1969). · Zbl 0182.08601
[831] R. G. Varshney, ?On generalized |V, ?| summability factors of infinite series,? Kodai Math. Semin. Repts.,21, No. 3, 281?289 (1969). · Zbl 0187.32302 · doi:10.2996/kmj/1138845936
[832] R. G. Varshney, ?On generalized |V, ?| summability factors of infinite series, Errata,? Kodai Math. Semin. Repts.,22, No. 2, 250 (1970). · doi:10.2996/kmj/1138846122
[833] R. G. Varshney, ?On |V, ?| summability factors of infinite series,? Rend. Mat.,4, No. 1, 105?113 (1971).
[834] P. Vermes, ?Note on Tauberian constants,? Publs. Math.,15, Nos. 1?4, 203?209 (1968).
[835] M. Vuilleumier, ?Asymptotic behavior of linear transformations of series,? Math. Z.,98, No. 2, 126?139 (1967). · Zbl 0156.06503 · doi:10.1007/BF01112722
[836] R. Warlimont, ?Convexity theorems in the theory of strong summability,? J. London Math. Soc.,3, No. 2, 288?296 (1971). · Zbl 0208.08402 · doi:10.1112/jlms/s2-3.2.288
[837] A. Waszak, ?Some remarks on Orlicz spaces of strongly (A,?)-summable sequence,? Bull. Acad. Polon. Sci. Sér. Sci. Math., Astron. Phys.,15, No. 4, 265?269 (1967). · Zbl 0152.12902
[838] A. Waszak, ?On spaces of strongly summable sequences with an Orlicz metric,? Rocz. Pol. Tow. Mat., Ser. 1,11, No. 2, 229?246 (1968). · Zbl 0161.33503
[839] A. Waszak, ?Orlicz spaces connected with strong summability. I. Linear functionals in spaces of strongly summable functions,? Rocz. Pol. Tow. Mat., Ser. 115, 217?234 (1971). · Zbl 0234.40006
[840] D. Waterman, ?A Gap Tauberian theorem,? Monatsh. Math.,67, No. 2, 142?144 (1963). · Zbl 0141.25002 · doi:10.1007/BF01298945
[841] D. Waterman, T. Ito, F. Barber, and J. Ratti, ?Reflexivity and summability: the Nakanol(pi) spaces,? Stud. Math.,33, No. 2, 141?146 (1969). · Zbl 0179.45601
[842] A. J. White, ?Some inclusion relations between matrices compounded from Cesàro matrices,? Trans. Amer. Math. Soc.,124, No. 3, 558?568 (1966). · doi:10.1090/S0002-9947-1966-0200642-7
[843] R. Whitley, ?Conull and other matrices which sum a bounded divergent sequence,? Amer. Math. Month.,74, No. 7, 798?801 (1967). · Zbl 0182.46401 · doi:10.2307/2315795
[844] A. Wilansky, ?Distinguished subsets and summability invariants,? J. Anal. Math.,12, 327?350 (1964). · Zbl 0127.02701 · doi:10.1007/BF02807439
[845] A. Wilansky, ?Topological divisors of zero and Tauberian theorems,? Trans. Amer. Math. Soc.113, No. 2, 240?251 (1964). · Zbl 0182.46302 · doi:10.1090/S0002-9947-1964-0168967-X
[846] A. Wilansky, Functional Analysis, Blaisdell, New York (1964); Amer. Book Publ. Rec.,5, No. 11, 47 (1964). · Zbl 0136.10603
[847] A. Wilansky, ?On an article by R. W. Cross on the summability of bounded divergent sequences,? Bull. Soc. Math. Belg.,17, No. 2, 186?187 (1965). · Zbl 0136.35304
[848] A. Wilansky, ?Separable and reflexive spaces of bounded sequences,? Proc. Amer. Math. Soc.,34, No. 1, 314?315 (1972). · Zbl 0237.40011
[849] J. M. Wills, ?Note zu einem Borelschen Summationsverfahren,? Math. Z.92, No. 4, 323?330 (1966). · Zbl 0138.04003 · doi:10.1007/BF01112201
[850] L. Wlodarski, ?On some strong continuous summability methods,? Proc. London Math. Soc.,13, No. 50, 273?289 (1963). · Zbl 0117.28901 · doi:10.1112/plms/s3-13.1.273
[851] L. Wlodarski, ?On a new approach to continuous methods of summation,? Colloq. Math.,10, No. 1, 61?71 (1963). · Zbl 0111.25903
[852] L. Wlodarski, ?On the regularity of iteration products of matrix transformations,? Proc. London Math. Soc.,14, No. 54, 342?352 (1964). · Zbl 0141.06204 · doi:10.1112/plms/s3-14.2.342
[853] B. Wood, ?A generalized Euler summability transform,? Math. Z.,105, No. 1, 36?48 (1968). · Zbl 0181.35101 · doi:10.1007/BF01135447
[854] B. Wood, ?Series to sequence and series to series transformations in Fréchet spaces,? Math. Ann.184, No. 3, 224?232 (1970). · Zbl 0176.10704 · doi:10.1007/BF01351566
[855] B. Wood, ?Convergence of certain sequences of positive linear operators,? Studia Math.,34, No. 2, 113?119 (1970).
[856] B. Wood, ?Onl-l summability,? Proc. Amer. Math. Soc.,25, No. 2, 433?436 (1970).
[857] B. Wood, ?Consistency and inclusion results for Toeplitz matrices of bounded linear operators,? Compos. Math.,24, No. 3, 313?327 (1972). · Zbl 0238.46010
[858] M. B. Zaman, ?On absolute equivalence of T-matrices for (C, r)-summable sequences,? J. Indian Math. Soc.,36, Nos. 1?2, 89?95 (1972). · Zbl 0271.40008
[859] A. Zame, ?On the measure of well-distributed sequences,? Proc. Amer. Math. Soc.,18, No. 4, 575?579 (1967). · Zbl 0173.04901 · doi:10.1090/S0002-9939-1967-0213308-0
[860] A. Zame, ?Almost convergence and well-distributed sequences,? Can. J. Math.,20, No. 5, 1211?1214 (1968). · Zbl 0179.35201 · doi:10.4153/CJM-1968-116-1
[861] K. Zeller, ?Lineare Räume und Limitierung,? Stud. Math., No. 1, Ser. Spec., 137?138 (1963).
[862] K. Zeller, ?Abschnittsabschätzungen bei Matrixtransformationen,? Math. Z.,80, No. 4, 355?357 (1963). · Zbl 0108.27002 · doi:10.1007/BF01162391
[863] K. Zeller and W. Beekmann, Theories der Limitierungsverfahren, Vol. 12, Springer, Berlin-Heidelberg-New York (1970). · Zbl 0199.11301
[864] S. Zimering, ?On a Mercerian theorem and its application to the equiconvergence of Cesàro and Riesz transforms,? Publs. Inst. Math.,1, 83?91 (1961(1962)).
[865] S. Zimering, ?An extension of a theorem of R. Rado and its applications to Mercerian theorems,? C. R. Acad. Sci.,260, No. 11, 2965?2966 (1965).
[866] S. Zimering, ?Limitation matrices of a triangular matrix and their application to Mercerian theorems,? C. R. Acad. Sci.,260, No. 12, 3248?3250 (1965).
[867] S. Zimering, ?A remark on a Hardy-Littlewood theorem and its application to the equiconvergence of Cesàro and Riesz methods,? C. R. Acad. Sci.,260, No. 17, 4395?4396 (1965). · Zbl 0127.28701
[868] S. Zimering, ?On two Mercerian theorems of H. A. Davydov,? C. R. Acad. Sci.,AB262, No. 21, A1162-A1163 (1966).
[869] S. Zimering, ?A Mercerian theorem,? Indian J. Math.,8, No. 2, 71?75 (1966).
[870] S. Zimering, ?On the equiconvergence between two Noerlund transformations,? Proc. Amer. Math. Soc.,19, No. 2, 263?267 (1968). · Zbl 0173.06001 · doi:10.1090/S0002-9939-1968-0223784-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.