zbMATH — the first resource for mathematics

A Walsh series direct method for solving variational problems. (English) Zbl 0339.49017

49M15 Newton-type methods
33E99 Other special functions
42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
Full Text: DOI
[1] Rademacher, H., Einige salze über reihen von allgemeinen orthogonafuntionen, Math. ann., Vol. 87, 712-738, (1922)
[2] Walsh, J.L., A closed set of orthogonal functions, Am. J. math., Vol. 45, 5-24, (1923) · JFM 49.0293.03
[3] Lee, J.D., Review of recent work on applications of Walsh functions in communications, (), 26-35
[4] Harmuth, H.F., Application of Walsh function in communications, IEEE spect., Vol. 6, No. 11, 82-91, (Nov. 1969)
[5] Gibbs, J.E.; Gebbie, H.A., Application of Walsh function to transform spectroscopy, Nature, Vol. 224, 1012-1013, (Dec. 1969)
[6] Thomas, C.W.; Welch, A.J., Heart rate representation using Walsh functions, (), 154-158
[7] Picher, F., Walsh function and optimal linear systems, (), 17-22
[8] Corrington, M.S., Solution of differential and integral equations with Walsh functions, IEEE trans. circuit theory, Vol. CT-20, No. 5, 470-475, (Sept. 1973)
[9] Gelfand, I.M.; Fomin, S.V., Calculus of variations, (1963), Prentice-Hall Englewood Cliffs, N.J · Zbl 0127.05402
[10] Brewster, C.D., Approximate methods of higher analysis, (1958), Interscience New York
[11] Elsgolc, E.L., Calculus of variation, (1961), Pergamon Press London · Zbl 0101.32001
[12] Schechter, R.S., The variation method in engineering, (), 23-24
[13] Neuman, C.P.; Sen, A.; Neuman, C.P.; Sen, A., Weighted residual methods in optimal control, Automatica, IEEE trans. auto control, Vol. AC-19, 67-69, (Feb. 1974)
[14] Mang, J.H., A sequency-ordered fast Walsh transform, IEEE trans. audio X electroacoust, Vol. AU-20, No. 3, 204-205, (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.