×

Towards the ultimate conservative difference scheme. IV: A new approach to numerical convection. (English) Zbl 0339.76056


MSC:

76R99 Diffusion and convection
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Van Leer, B., Towards the ultimate conservative difference scheme. III. upstream-centered finite-difference schemes for ideal compressible flow, J. computational phys., 23, 263, (1977) · Zbl 0339.76039
[2] Godunov, S.K., Mat. sb., 4, 271, (1959), also Cornell Aeronautical Lab. Transl.
[3] Van Leer, B., J. computational phys., 14, 361, (1974)
[4] Courant, R.; Isaacson, E.; Rees, M., Comm. pure appl. math., 5, 243, (1952)
[5] Lax, P.D.; Wendroff, B., Comm. pure appl. math., 13, 217, (1960)
[6] Fromm, J.E., J. computational phys., 3, 176, (1968)
[7] Roache, P.J.; Mueller, T.J., Aiaa j., 8, 530, (1970)
[8] Van Leer, B., MUSCL, a new approach to numerical gas dynamics, ()
[9] Van Leer, B., (), 163
[10] Boris, J.P.; Book, D.L., J. computational phys., 11, 38, (1973)
[11] {\scB. VAN LEER}, Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s method, in preparation. · Zbl 1364.65223
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.