×

zbMATH — the first resource for mathematics

Integral extensions of rings satisfying a polynomial identity. (English) Zbl 0341.16009
J. Algebra 40, 245-257 (1976); Errata ibid. 44, 576 (1977).

MSC:
16Rxx Rings with polynomial identity
16P10 Finite rings and finite-dimensional associative algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amitsur, S.A, Polynomial identities and Azumaya algebras, J. algebra, 27, 117-125, (1973) · Zbl 0272.16003
[2] Bourbaki, N, Commutative algebra, (1972), Hermann Paris
[3] Deuring, Algebren, (1935), Springer Berlin · JFM 61.0118.01
[4] Eisenbud, D, Subrings of artinian and Noetherian rings, Math. ann., 185, 247-249, (1970) · Zbl 0207.04702
[5] Fields, K.L, Examples of orders over discrete valuation rings, Math. Z., 111, 126-130, (1969) · Zbl 0176.31502
[6] Formanek, E, Central polynomials for matrix rings, J. algebra, 23, 129-132, (1972) · Zbl 0242.15004
[7] Formanek, E, Noetherian P. I. rings, Comm. in alg., 1, 79-86, (1974) · Zbl 0272.16004
[8] Formanek, E; Jategaonkar, A, Subrings of Noetherian rings, (), 181-186 · Zbl 0267.13009
[9] Jategaonkar, A, Left principal ideal rings, () · Zbl 0192.37901
[10] Krull, Beitrage zur arithmetik kommutativer integritätsbericht III, Math. Z., 42, 745-766, (1937) · Zbl 0017.14901
[11] Nagarajan, Groups acting on Noetherian rings, Nieuw arch. wisk., 16, 25-29, (1968) · Zbl 0175.03801
[12] Procesi, Rings with polynomial identities, (1973), M. Dekker New York · Zbl 0262.16018
[13] {\scRobson and Small}, Hereditary prime P. I. rings are classical hereditary order, to appear. · Zbl 0286.16003
[14] Rowen, L, Some results on the centre of a ring with polynomial identity, Bull. amer. math. soc., 79, 219-223, (1973) · Zbl 0252.16007
[15] Schelter, On the Krull-akizuki theorem, J. London math. soc., 11, (1976), in press · Zbl 0331.16017
[16] Sirsov, A, On rings with identity relations, Math. sb. N. S., 43, 85, 277-283, (1957)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.