×

zbMATH — the first resource for mathematics

The critical measure diffusion process. (English) Zbl 0343.60001

MSC:
60B05 Probability measures on topological spaces
60J60 Diffusion processes
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60F05 Central limit and other weak theorems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Athreya, K.B., Ney, P.: Branching Processes. Berlin-Heidelberg-New York: Springer 1972 · Zbl 0259.60002
[2] Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. New York: Academic Press 1968 · Zbl 0169.49204
[3] Dawson, D.A.: Stochastic Evolution Equations and related Measure Processes. J. multivariate Analysis 3 1-52 (1975) · Zbl 0299.60050 · doi:10.1016/0047-259X(75)90054-8
[4] Debes, H., Kerstan, J., Liemant, A., Matthes, K.: Verallgemeinerung eines Satzes von Dobrushin, I. Math. Nachr. 47, 183-244 (1970) · Zbl 0235.60105 · doi:10.1002/mana.19700470120
[5] Feller, W.: An introduction to Probability Theory and its Applications. Vol. II. New York: Wiley 1966 · Zbl 0138.10207
[6] Gallavotti, G., Martin-Löf, A.: Block-spin distributions for shortrange attractive Ising models. Il. Nuovo Cimento 25, 425-444 (1975) · doi:10.1007/BF02737692
[7] Ibragimov, I.A., Linnik, Yu.V.: Independent and stationary sequences of random variables. Groningen: Wolters-Noordhoff 1971 · Zbl 0219.60027
[8] Jagers, P.: Aspects of Random Measures and Point Processes. Advances in Appl. Probability 3, 179-238 (1974)
[9] Ji?ina, M.: Asymptotic behavior of measure-valued branching processes. Rozpravy ?eskoslovenské Akad. V?d. ?ada Mat. P?irod. V?d. 76, no. 1 (1966)
[10] Liemant, V.A., Matthes, K.: Verallgemeinerung eines Satzes von Dobrushin, IV. Math. Nachr., 59, 311-317 (1974) · Zbl 0287.60092 · doi:10.1002/mana.19740590126
[11] Whittle, P.: Topographic correlation, power law covariance functions and diffusion. Biometrika 49, 305-314 (1962) · Zbl 0114.08003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.