×

zbMATH — the first resource for mathematics

Invariant sets for a class of semi-linear equations of evolution. (English) Zbl 0344.45001

MSC:
45D05 Volterra integral equations
45G10 Other nonlinear integral equations
34G99 Differential equations in abstract spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Browder, F.E., Nonlinear equations of evolution, Ann. math., 80, 485-523, (1964) · Zbl 0127.33602
[2] Pazy, A., A class of semi-linear equations of evolution, Israel J. math., 20, 23-26, (1975) · Zbl 0305.47022
[3] Segal, I., Nonlinear semi-groups, Ann. math., 78, 339-364, (1963) · Zbl 0204.16004
[4] Godunov, A.N., On Peano’s theorem in Banach spaces, Funct. analysis appl., 9, 59-60, (1975), (Russian) · Zbl 0314.34059
[5] Martin, R.H., Invariant sets for perturbed semi-groups of linear operators, Annali. mat. pura appl., CV, 221-239, (1975) · Zbl 0315.34074
[6] Crandal, M.G.; Liggett, T., Generation of semigroups of nonlinear transformations on general Banach spaces, Am. J. math., 93, 265-298, (1971) · Zbl 0226.47038
[7] Barbu, V., Continous perturbations of nonlinear m-accretive operators in Banach spaces, Boll.U.M.I., 6, 270-278, (1972) · Zbl 0256.47053
[8] Brezis, H., On a characterization of flow-invariant sets, Communs pure appl. math., 23, 261-263, (1970) · Zbl 0191.38703
[9] Crandall, M.G., A generalization of Peano’s existence theorem and flow invariance, Proc. am. math. soc., 36, 151-155, (1972) · Zbl 0271.34084
[10] Martin, R.H., Differential equations on closed subsets of a Banach space, Trans. am. math. soc., 179, 399-414, (1973) · Zbl 0293.34092
[11] Martin, R.H., Approximation and existence of solutions to ordinary differential equations in Banach spaces, Funckialaj ekvacioj, 16, 195-211, (1973) · Zbl 0296.34058
[12] Pavel, N., Second order differential equations on closed subsets of a Banach space, Boll.U.M.I., 12, 348-353, (1975) · Zbl 0335.34038
[13] Pavel N. & Ursescu C., Invariant sets for higher order differential equations (to appear). · Zbl 0396.34017
[14] Ursescu C., The existence of solutions on closed subsets in Carathéodory’s type conditions (to appear).
[15] Webb, G.F., Continous nonlinear perturbation of linear accretive operators in Banach spaces, J. funct. analysis, 10, 191-203, (1972) · Zbl 0245.47052
[16] Pavel, N., On an integral equation, Rev. roum. math. pures appl., 19, 237-244, (1974) · Zbl 0274.45013
[17] Lakshmikantham, V.; Mitchell, A.R.; Mitchell, R.W., Differential equations on closed subsets of a Banach space, Technical report nr. 13, (1974), The Univ. of Texas at Arlington U.S.A · Zbl 0373.34034
[18] Pavel, N., Equations non-linéaires d’évolution, Mathematica cluj, 14, 37, 289-300, (1972) · Zbl 0281.34059
[19] Pazy, A., On the differentiability and compactness of semigroups of linear operators, J. math. mech., 11, 1131-1142, (1968) · Zbl 0162.45903
[20] Butzer, P.L.; Berens, H., Semi-groups of operators and approximation, (1967), Springer-Verlag New York · Zbl 0164.43702
[21] Cartan, H., Calcul différentiel, (1967), Paris
[22] Pazy, A.; Pazy, A., Semi-group of linear operators and applications to partial differential equations, Lectures notes, 10, (1974), University of Maryland · Zbl 0516.47023
[23] Pavel, N., Approximate solutions of Cauchy problems for some differential equations in Banach spaces, Funkcialaj ekvacioj, 17, 85-94, (1974) · Zbl 0297.34059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.