×

zbMATH — the first resource for mathematics

Lineare Operatoren in Hilberträumen. (English) Zbl 0344.47001
Mathematische Leitfaden. Stuttgart: B.G. Teubner. 368 S. mit 93 Beisp. und 221 Aufg. DM 58.00 (1976).

MSC:
47-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to operator theory
46Cxx Inner product spaces and their generalizations, Hilbert spaces
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
47Gxx Integral, integro-differential, and pseudodifferential operators
35J10 Schrödinger operator, Schrödinger equation
46M05 Tensor products in functional analysis
47B06 Riesz operators; eigenvalue distributions; approximation numbers, \(s\)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
47Axx General theory of linear operators
47B15 Hermitian and normal operators (spectral measures, functional calculus, etc.)
47B25 Linear symmetric and selfadjoint operators (unbounded)
47F05 General theory of partial differential operators (should also be assigned at least one other classification number in Section 47-XX)