The structure of nearly Kähler manifolds. (English) Zbl 0345.53019


53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53B20 Local Riemannian geometry
57R20 Characteristic classes and numbers in differential topology
Full Text: DOI EuDML


[1] Gray, A.: Minimal varieties and almost Hermitian submanifolds. Michigan Math. J.12, 273-287 (1965) · Zbl 0132.16702
[2] Gray, A.: Some examples of almost Hermitian manifolds. Ill. J. Math.10, 353-366 (1966) · Zbl 0183.50803
[3] Gray, A.: Vector cross products on manifolds. Transactions Amer. Math. Soc.141, 465-504 (1969) · Zbl 0182.24603
[4] Gray, A.: Nearly Kähler manifolds. J. Diff. Geometry4, 283-309 (1970) · Zbl 0201.54401
[5] Gray, A.: Riemannian manifolds with geodesic symmetries of order 3. J. Diff. Geometry7, 343-369 (1972) · Zbl 0275.53026
[6] Gray, A.: Classification des variétés approximativement kähleriennes de courbure sectionnelle constante. C.R. Acad. Sci. Paris, Ser. A.279, 797-800 (1974) · Zbl 0301.53016
[7] Kot?, S.: Some theorems on almost Kählerian spaces. J. Math. Soc. Japan12, 422-433 (1960) · Zbl 0192.28303
[8] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Vol. II. New York: John Wiley 1969 · Zbl 0175.48504
[9] Masumoto, M.: On 6-dimensional almost Tachibana spaces. Tensor, N.S23, 250-252 (1972) · Zbl 0236.53048
[10] Satô, I.: On specialK-spaces of constant holomorphic sectional curvature. Tensor, N.S24, 355-362 (1972)
[11] Takamatsu, K.: Some properties of 6-dimensionalK-spaces. K?dai Math. Sem. Rep.23, 215-232 (1971) · Zbl 0222.53036
[12] Watanabe, Y., Takamatsu, K.: On aK-space of constant holomorphic sectional curvature. K?dai Math. Sem. Rep.25, 297-306 (1973) · Zbl 0276.53029
[13] Yamaguchi, S., Ch?man, O., Masumoto, M.: On a special almost Tachibana space. Tensor N.S24 351-354 (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.