zbMATH — the first resource for mathematics

Asymptotic behavior of unbounded solutions of linear Volterra integral equations. (English) Zbl 0347.45022

45M05 Asymptotics of solutions to integral equations
45D05 Volterra integral equations
45J05 Integro-ordinary differential equations
45F05 Systems of nonsingular linear integral equations
Full Text: DOI
[1] Gelfand, I, Über absolut konvergente trigonometrische reihen und integrale, Mat. sb., 9, 51-56, (1941) · JFM 67.0409.03
[2] Gelfand, I.M; Raikov, D.A; Shilov, G.E, Commutative normed rings, (1964), Chelsea New York · Zbl 0063.01567
[3] Levin, J.J; Shea, D.F; Levin, J.J; Shea, D.F; Levin, J.J; Shea, D.F, On the asymptotic behavior of the bounded solutions of some integral equations, III, J. math. anal. appl., J. math. anal. appl., J. math. anal. appl., 37, 537-575, (1972) · Zbl 0241.45021
[4] Miller, R.K, Asymptotic stability and perturbations for linear Volterra integrodifferential systems, () · Zbl 0206.41604
[5] Miller, R.K, Structure of solutions of unstable linear Volterra integrodifferential equations, J. differential eqs., 15, 129-157, (1974) · Zbl 0297.45005
[6] Paley, R.E.A.C; Wiener, N, Fourier transforms in the complex domain, (), Providence, R.I. · Zbl 0008.15203
[7] Pitt, H.R, General Mercerian theorems (II), (), 248-267, (2) · Zbl 0063.06265
[8] Pitt, H.R, Tauberian theorems, (1958), Oxford University Press Oxford · Zbl 0084.32403
[9] Shea, D.F; Wainger, S, Variants of the Wiener-Lévy theorem, with applications to stability problems for some Volterra integral equations, Amer. J. math., 97, 312-343, (1975) · Zbl 0318.45016
[10] Wheeler, R.L, A note on systems of linear integrodifferential equations, (), 477-482 · Zbl 0256.45017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.