×

Théorie du degré dans certains espaces de Fréchet d’après R. S. Hamilton. (French) Zbl 0347.58002


MSC:

58B15 Fredholm structures on infinite-dimensional manifolds
55M25 Degree, winding number
58B05 Homotopy and topological questions for infinite-dimensional manifolds
58C15 Implicit function theorems; global Newton methods on manifolds
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] N. DESOLNEUX-MOULIS , Le problème des modules pour les variétés hyperboliques (en préparation). · Zbl 0702.58033
[2] R.S. HAMILTON , Deformation of complex structures II (Preprint).
[3] J. NASH , The embedding problem for Riemannian manifolds (Ann. of Math. 1956 , vol. 63, p. 20-63). MR 17,782b | Zbl 0070.38603 · Zbl 0070.38603
[4] J.T. SCHWARTZ , Non linear functionnal analysis , Gordon and Breach ( 1969 ). Zbl 0203.14501 · Zbl 0203.14501
[5] F. SERGERAERT , Une extension d’un théorème de fonctions implicites de Hamilton , Actes, Colloque LYON - Mai 1975 , Mémoire S.M.F. Numdam | Zbl 0352.58005 · Zbl 0352.58005
[6] F. SERGERAERT , Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications , Ann. Sc. de l’ENS, 1972 , n^\circ 5, p. 599-660. Numdam | MR 54 #6182 | Zbl 0246.58006 · Zbl 0246.58006
[7] S. SMALE , An infinite dimensional version of Sard’s theorem , Amer. J. of Math., 87 ( 1965 ), 861-866. MR 32 #3067 | Zbl 0143.35301 · Zbl 0143.35301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.