×

zbMATH — the first resource for mathematics

The number of subdirectly irreducible algebras in a variety. (English) Zbl 0348.08002

MSC:
08B99 Varieties
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. I. Abakumov, E. A. Palyutin, M. A. Taitslin, and Yu. E. Shishmarev,Categorical quasivarieties, Algebra and Logic11 (1972), 1–20. · Zbl 0258.02050
[2] P. D. Bacsich,Cofinal simplicity and algebraic closedness, Algebra Universalis2 (1972), 354–360. · Zbl 0259.08005
[3] B. Banaschewski,Injectivity and essential extensions in equational classes of algebras, Proceedings of the Conference on Universal Algebra, October, 1969, Queen’s University, Kingston (1970), 131–147.
[4] A. Day,A note on the congruence extension property, Algebra Universalis1 (1971), 234–235. · Zbl 0228.08001
[5] A. Day,Injectivity in equational classes of algebras, Canad. J. Math.24 (1972), 209–220. · Zbl 0254.08008
[6] G. Grätzer,Universal Algebra, Van Nostrand, Princeton, N.J. (1968).
[7] L. Henkin, J. D. Monk, and A. Tarski,Cylindric Algebras, Part I, North-Holland Publishing Co., Amsterdam (1971). · Zbl 0214.01302
[8] D. Higgs,Remarks on residually small varieties, Algebra Universalis1 (1972), 383–385. · Zbl 0243.08004
[9] B. Jónsson,Algebras whose congruence lattices are distributive, Math. Scand.21 (1967), 110–121. · Zbl 0167.28401
[10] G. Kreisel and J. L. Krivine,Elements of Mathematical Logic, North-Holland, Amsterdam (1967). · Zbl 0155.33801
[11] H. Lakser,Principal congruences of pseudocomplemented distributive lattices, Proc. Amer. Math. Soc.37 (1973), 32–36. · Zbl 0269.06005
[12] R. McKenzie and S. Shelah,The cardinals of simple models for universal theories, Proceeding of the Tarski Symposium Berkeley, California, 1971, (to appear). · Zbl 0316.02057
[13] R. Quackenbush,Equational classes generated by finite algebras, Algebra Universalis1 (1971), 265–266. · Zbl 0231.08004
[14] J. Rotman,The Theory of Groups, Allyn and Bacon, Inc., Boston (1965). · Zbl 0123.02001
[15] W. Taylor,Residually small varieties, Algebra Universalis2 (1972), 33–51. · Zbl 0263.08005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.