×

zbMATH — the first resource for mathematics

A note on the existence and uniqueness of solutions of the micropolar fluid equations. (English) Zbl 0351.76006

MSC:
76A99 Foundations, constitutive equations, rheology, hydrodynamical models of non-fluid phenomena
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Eringen, A.C., J. math. mech., 16, 1, (1966)
[2] Ladyzhenskaya, O.A., The mathematical theory of viscous incompressible flow, (1969), Gordon & Breach New York · Zbl 0184.52603
[3] Adams, R.A., Sobolev space, (1975), Academic Press New York
[4] Aubin, J.P., C.r.a.s., 256, 350, (1963)
[5] Iesan, D., Int. J. engng sci., 9, 59, (1971)
[6] Hopf, E., Math. nachr., 4, 213, (1951)
[7] Kiselev, A.; Ladyzhenskaya, O.A., Izv. akad. nauk SSSR, 21, 655, (1957)
[8] Ladyzhenskaya, O.A., Comm. pure app. math., 12, 427, (1959)
[9] Prodi, G., Rend. sem. mat. Padova, 30, 1, (1960)
[10] Prodi, G., Annali mat. pura app., 48, 173, (1959)
[11] Shahinpoor, M.; Ahmadi, G., Q. app. math., 31, 257, (1973)
[12] Ahmadi, G.; Shahinpoor, M., Int. J. engng sci., 12, 657, (1974)
[13] Lions, J.L., Quelques méthodes de resolution des problémes aux limites non linéaires, (1969), Dunod Gauthier-Villars Paris · Zbl 0189.40603
[14] Lassner, G., Arch. rational mech. anal., 25, 388, (1967)
[15] Förste, J., monatsber. Deutsch. akad. wiss., Berlin, 13, 1, (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.