×

Error estimates for elastic-plastic problems. (English) Zbl 0357.73062


MSC:

74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] 1. H. BREZIS, Monotonicity in Hilbert spaces and some applications to nonlinear partial differential equations. Contributions to nonlinear functional analyzis, E. Zarantonello (ed.), Academic Press, New York, 1971, pp. 101-156. Zbl0278.47033 MR394323 · Zbl 0278.47033
[2] 2. H. BREZIS, Multiplicateur de Lagrange en torsion élasto-plastique, Arch. Rat. Mech. Anal., 2972, pp. 32-40. Zbl0265.35021 MR346346 · Zbl 0265.35021
[3] 3. H. BREZIS, G. STAMPACCHIA, Sur la régularité de solutions d’inéquations elliptiques, Bull. Soc. Math. France, Vol. 96, 1968, 153-180. Zbl0165.45601 MR239302 · Zbl 0165.45601
[4] 4. F. BREZZI, W. HAGER, P. A. RAVIART, Error estimates for variational inequalities, to appear. · Zbl 0427.65077
[5] 5. P. G. CIARLET, Numerical analysis of the finite element method, Cours d’été d’Analyse Numérique, 1975, Université de Montréal. Zbl0363.65083 MR495010 · Zbl 0363.65083
[6] 6. P. G. CIARLET, The finite element method, North Holland (to appear). MR520174 · Zbl 0383.65058
[7] 7. G. DUVAUT, J. L. LIONS, Les inéquations en Mécanique et en Physique, Dunod, Paris, 1972. Zbl0298.73001 MR464857 · Zbl 0298.73001
[8] 8. R. S. FALK, Approximate solutions of some variational inequalities with order of convergence estimates, Ph. D. Thesis, Cornell University, Ithaca, N. Y., 1971.
[9] 9. R. GLOWINSKI, Sur l’approximation d’une inéquation variationnelle elliptique de type Bingham, R.A.I.R.O., Analyse Numérique Vol. 10, 12 (1976) 13-30. MR520279
[10] 10. R. GLOWINSKI, J. L. LIONS, R. TREMOLIERES, Approximation des inéquations variationnelles, Dunod, Paris, 1976. Zbl0358.65091 · Zbl 0358.65091
[11] 11. C. JOHNSON, Existence theorems for plasticity problems, J. Math. Pures et Appliquées, 55 (1976) 431-444. Zbl0351.73049 MR438867 · Zbl 0351.73049
[12] 12. C. JOHNSON, A hybrid finite element method for plasticity problems with hardening, to appear. Zbl0374.73039 MR519017 · Zbl 0374.73039
[13] 13. O. A. LADYZENSKAYA, The mathematical theory of viscous incompressible flow, Gordon & Breach, New York, 1969. Zbl0184.52603 MR254401 · Zbl 0184.52603
[14] 14. J. MANDEL, Cours de Mécanique des Milieux Continus, T. 2, Mécanique des Solides, Gauthier-Villars, Paris, 1966. Zbl0148.20305 · Zbl 0148.20305
[15] 15. B. MERCIER, Recherche numérique d’un champ de déplacements en élasto-plasticité, Rapport Laboria n^\circ 71, Iria, 78150 Le Chesnay, France, 1974.
[16] 16. B. MERCIER, Approximation par éléments finis, et résolution par un algorithme de pénalisation-dualité d’un problème d’élasto-plasticité, C. R. Acad. Sc. Paris, T. 280, Série A, 1975, pp. 287-290. Zbl0302.73044 MR381471 · Zbl 0302.73044
[17] 17. B. MERCIER, Une méthode de résolution du problème des charges limites utilisant les fluides de Bingham, C. R. Acad. Sc. Paris, T. 281, Série A, 1975, pp. 525-527. Zbl0319.76009 MR386457 · Zbl 0319.76009
[18] 18. R. T. ROCKAFELLAR, Convex analysis, Princeton, corollary 28-2-2, 1970, p. 279. Zbl0193.18401 MR274683 · Zbl 0193.18401
[19] 29. M. J. STRAUSS, Variations of Korn’s and Sobolev’s inequalities, Proc. of Symposia in Pure Math., Vol. XXIII, A.M.S., Providence, R. I., 1973, pp. 207-214. Zbl0259.35008 MR341064 · Zbl 0259.35008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.