×

zbMATH — the first resource for mathematics

Hereditarily finitely axiomatizable extensions of logic S4. (English. Russian original) Zbl 0358.02022
Algebra Logic 15(1976), 115-128 (1977); translation from Algebra Logika 15, 185-204 (1976).
Es wird gezeigt: Die Tarski-Übersetzungen der tabularen und prätabularen superintuitionistischen Logiken sind erblich endlich axiomatisierbar und daher erblich entscheidbar. Die ersten beiden Schichten des Verbandes der modalen Logiken, deren intuitionistisches Fragment im Sinne der Tarski-Übersetzung tabular oder prätabular ist, sind damit abzählbar. Die übrigen Schichten haben jedoch die Mächtigkeit des Kontinuums. Die tabularen Logiken haben im Verband nur endlich viele unmittelbare Vorgänger.

MSC:
03B45 Modal logic (including the logic of norms)
03B55 Intermediate logics
PDF BibTeX Cite
Full Text: DOI EuDML
References:
[1] A. V. Kuznetsov, ”On certain aspects of the classification of superintuitionistic logics,” Third All-Union Conf. Math. Logic [in Russian], Novosibirsk (1974), pp. 119–122.
[2] A. V. Kuznetsov, ”Certain properties of structures on varieties of pseudo-Boolean algebras,” Eleventh All-Union Algebraic Colloq., Resumés of Communications and Reports [in Russian], Kishinev (1971), pp. 225–256.
[3] L. L. Maksimova, ”Pretabular superintuitionistic logics,” Algebra i Logika,11, No. 5, 558–570 (1972).
[4] L. L. Maksimova, ”Pretabular extensions of logic S4 of Lewis,” Algebra i Logika,14, No. 1, 28–55 (1975).
[5] L. L. Maksimova, ”Modal logics of finite layers,” Algebra i Logika,14, No. 3, 304–319 (1975).
[6] L. L. Maksimova and V. V. Rybakov, ”On the lattice of normal modal logics,” Algebra i Logika,13, No. 2, 188–216 (1974).
[7] R. Feys, Modal Logic [Russian translation], Nauka, Moscow (1974). · Zbl 0291.02009
[8] V. A. Yankov, ”On the relation between deducibility in intuitionistic propositional calculus and finite implicative structures,” Dokl. Akad. Nauk SSSR,151, No. 6, 1293–1294 (1963).
[9] E. J. Lemmon, ”Algebraic semantics for modal logics. I, II,” J. Symb. Logic,31, No. 1, 46–65 (1966),;31, No. 2, 191–218 (1966). · Zbl 0147.24805
[10] T. Hosoi, ”On intermediate logics. I,” J. Fac. Sci. Univ. Tokyo, Sec. I,14, 293–312 (1967). · Zbl 0188.31602
[11] I. Hosoi, ”On algebraic method and the axiomatic method for dealing with propositional logics,” J. Fac. Sci. Univ. Tokyo, Sec. I. A,14, 131–169 (1967). · Zbl 0162.31105
[12] R. A. Bull, ”That all normal extensions of S4.3 have the finite model property,” Z. Math. Log. und Grund. Math.,12, 341–344 (1966). · Zbl 0154.00407
[13] A. Grzegorczyk, ”Some relational systems and associated topological spaces,” Fund. Math.,60, 223–231 (1967). · Zbl 0207.29603
[14] K. Fine, ”The logics containing S4.3,” Z. Math. Log. und Grund. Math.,17, 371–376 (1971). · Zbl 0228.02011
[15] K. Fine, ”An incomplete logic containing S4,” Theoria,40, No. 1, 30–34 (1974). · Zbl 0287.02011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.