×

A method of parameter differentiation applied to flow in porous annuli. (English) Zbl 0359.34017


MSC:

34B15 Nonlinear boundary value problems for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. Bellman, R. Kalaba, andG. M. Wing,Invariant Imbedding and the Reduction of Two-Point Boundary Value Problems to Initial Value Problems, Proc. Nat. Acad. Sci.46, 1646–1649 (1960). · Zbl 0096.14501 · doi:10.1073/pnas.46.12.1646
[2] H. B. Keller,Shooting and Embedding for Two-Point Boundary Value Problems, J. Math. Anal. and Appl.36, 598–609 (1971). · Zbl 0249.34009 · doi:10.1016/0022-247X(71)90042-4
[3] P. E. Rubbert andM. T. Landahl,Solution of Nonlinear Flow Problems Through Parametric Differentiation, Phys. Fluids10, 831–835 (1967). · Zbl 0168.46002 · doi:10.1063/1.1762196
[4] C. L. Narayana andP. Ramamoorthy,Compressible Boundary-Layer Equations Solved by the Method of Parameter Differentiation, AIAA J.10, 1085–1086 (1972). · Zbl 0247.76065 · doi:10.2514/3.50301
[5] C. W. Tan andR. DiBiano,A Study of the Falkner-Skan Problem with Mass Transfer, AIAA J.10, 923–925 (1972). · doi:10.2514/3.50246
[6] T. Y. Na,Comment on ”Compressible Boundary-Layer Equations Solved by the Method of Parameter Differentiation,” AIAA J.11, 1790–1791 (1973). · doi:10.2514/3.50701
[7] T. Y. Na andC. E. Turski,Solution of the Nonlinear Differential Equations for Finite Bending of a Thin-Walled Tube by Parameter Differentiation, Aero Quart. pp. 14–18 (1974).
[8] T. Y. Na andI. S. Habib,Non-iterative Solution of a Boundary Value Problem by Parameter Differentiation, Chem. Eng. Sci.29, 1669–1670 (1974).
[9] J. Casti, H. Kagiwada, R. Kalaba, andS. Ueno,Reduction of Fredholm Integral Equations to Cauchy Systems, Univ. of S. California, Dept. of Electrical Eng., Techn. Rep. No. 70-19 (1970).
[10] H. B. Keller,Numerical Methods for Two-Point Boundary Value Problems. Blaisdell Publ. Co., Waltham, Mass., 54–69 (1968). · Zbl 0172.19503
[11] M. Kubicek andV. Hlavacek,Solution of Non-linear Boundary Value Problems, a Novel Method, Chem. Eng. Sci.27, 743–750 (1972). · doi:10.1016/0009-2509(72)85009-7
[12] J. Morel,Similarity Solutions of Flows in Annuli with Rotating Permeable Walls, Ph.D. Thesis, Illinois Institute of Technology, Chicago, Ill. (1973)
[13] A. S. Berman,Laminar Flow in Channels with Porous Walls, J. Appl. Phys.24, 1232–1235 (1953). · Zbl 0050.41101 · doi:10.1063/1.1721476
[14] R. M. Terrill Flow through a Porous Annulus, Appl. Sci. Res.17, 204–222 (1967). · Zbl 0148.21805 · doi:10.1007/BF00386091
[15] System/360 Scientific Subroutine Package, (360A-CM-03X) Version II, Programmer’s Manual, H20-0205-1, IBM Co., pp. 122–126 (1967).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.