×

zbMATH — the first resource for mathematics

Pure soliton solutions of some nonlinear partial differential equations. (English) Zbl 0361.35018

MSC:
35G20 Nonlinear higher-order PDEs
35Q99 Partial differential equations of mathematical physics and other areas of application
35C10 Series solutions to PDEs
35B40 Asymptotic behavior of solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Nonlinear-evolution equations of physical significance. Phys. Rev. Letters31, 125–127 (1973) · Zbl 1243.35143 · doi:10.1103/PhysRevLett.31.125
[2] Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Studies Appl. Math.53, 249–315 (1974) · Zbl 0408.35068
[3] Caudrey, P.J., Gibbon, J.D., Eilbeck, J.C., Bullough, R.K.: Exact multisoliton solutions of the self induced transparency and sine-Gordon equations. Phys. Rev. Letters30, 237–238 (1973) · doi:10.1103/PhysRevLett.30.237
[4] Flaschka, H., Newell, A.C.: Integrable systems of nonlinear evolution equations. Lecture notes in physics, Vol. 38, pp. 355–440. Berlin-Heidelberg-New York: Springer 1975 · Zbl 0362.35043
[5] Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Letters19, 1095–1097 (1967) · Zbl 1103.35360 · doi:10.1103/PhysRevLett.19.1095
[6] Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Korteweg-de Vries equation and generalizations. VI. Methods for exact solution. Comm. Pure Appl. Math.27, 97–133 (1974) · Zbl 0291.35012 · doi:10.1002/cpa.3160270108
[7] Hirota, R.: Exact solution of the sine-Gordon equation for multiple collisions of solitons. J. Phys. Soc. Japan33, 1459–1463 (1972) · doi:10.1143/JPSJ.33.1459
[8] Kato, T.: Quasi-linear equations of evolution with applications to partial differential equations. Lecture notes in Mathematics, Vol. 448, pp. 25–70. Berlin-Heidelberg-New York: Springer 1974
[9] Kruskal, M.D.: The Korteweg-de Vries equation and related evolution equations. Lectures in applied mathematics, Vol. 15, pp. 61–84. Providence: American Mathematical Society 1974 · Zbl 0292.35017
[10] Kruskal, M.D., Zabusky, N.J.: Interaction of solutions in a collisionless plasma and the recurrence of initial states. Phys. Rev. Letters15, 240–243 (1965) · Zbl 1201.35174 · doi:10.1103/PhysRevLett.15.240
[11] Kruskal, M.D.: Nonlinear wave equations. Lecture notes in physics, Vol. 38, pp. 310–354. Berlin-Heidelberg-New York: Springer 1975
[12] Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math.21, 467–490 (1968) · Zbl 0162.41103 · doi:10.1002/cpa.3160210503
[13] Lax, P.D.: Invariant functionals of nonlinear equations of evolution. Proc. internat. conf. functional analysis and related topics (Tokyo 1969), pp. 240–251. Tokyo: Univ. of Tokyo Press 1970
[14] Lax, P.D.: Almost periodic behaviour of nonlinear waves. Adv. Math.16, 368–379 (1975) · Zbl 0306.35066 · doi:10.1016/0001-8708(75)90119-X
[15] Miura, R.M.: Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation. J. Math. Phys.9, 1202–1204 (1968) · Zbl 0283.35018 · doi:10.1063/1.1664700
[16] Miura, R.M., Gardner, C.S., Kruskal, M.D.: Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys.9, 1204–1209 (1968) · Zbl 0283.35019 · doi:10.1063/1.1664701
[17] Wadati, M., Toda, M.: The exactN-soliton solution of the Korteweg-de Vries equation. J. Phys. Soc. Japan32, 1403–1411 (1972) · doi:10.1143/JPSJ.32.1403
[18] Zakharov, V.E.: Kinetic equation for solitons. Soviet Phys. JETP33, 538–541 (1971)
[19] Zakharov, V.E., Shabat, B.A.: Exact theory of two-dimensional self-focusing and one-dimensional self modulation of waves in nonlinear media. Zh. Eksp. Teor. Fiz.61, 118 (1972); (Sov. Phys. JETP34, 62–69 (1972))
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.