×

zbMATH — the first resource for mathematics

Stability of critical cluster fields. (English) Zbl 0361.60058

MSC:
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60G99 Stochastic processes
60F05 Central limit and other weak theorems
60E05 Probability distributions: general theory
60G50 Sums of independent random variables; random walks
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Convergence of probability measures. Wiley, New York 1968. · Zbl 0172.21201
[2] Binmore, Ann. Math. Statist. 40 pp 303– (1969)
[3] Livre III Topologie générale, chap. VII., Paris 1963.
[4] Debes, Math. Nachr. 47 pp 183– (1970)
[5] Bounds for the concentration function of a sum of independent random vectors with values in a Euclidean or a Hilbert space. Thesis, Uppsala University, Department of Mathematics 1975.
[6] Esseen, Z. Wahrscheinlichkeitstheorie verw. Gebiete 9 pp 290– (1968)
[7] Feller, l’Enseignement Math. 15 pp 107– (1969)
[8] An introduction to probability theory and its applications II, 2nd ed., New York 1971.
[9] On the stability of spatially homogeneous cluster fields. Transactions of the 1974 European Meeting of Statisticians and the Seventh Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (to appear).
[10] Kallenberg, Z. Wahrscheinlichkeitstheorie verw. Gebiete 27 pp 23– (1973)
[11] Random measures. Berlin–London 1975–76.
[12] and , Unbegrenzt teilbare Punktprozesse. Berlin 1974.
[13] Kerstan, Math. Nachr. 51 pp 149– (1971)
[14] Liemant, Wiss. Z. Friedrich-Schiller-Universität Jena, Math. Nat. Reihe 18 pp 361– (1969)
[15] Liemant, Math. Nachr. 70 pp 387– (1975)
[16] Liemant, Math. Nachr. 59 pp 311– (1974)
[17] Liemant, Math. Nachr.
[18] Characteristic functions, 2nd ed. Griffin, London 1970. · Zbl 0201.20404
[19] Meyer, Lecture notes in Mathematics 284 (1972) · Zbl 0239.60001 · doi:10.1007/BFb0069773
[20] Slack, Z. Wahrscheinlichkeitstheorie verw. Gebiete 9 pp 139– (1968)
[21] Stam, Comp. Math. 18 pp 201– (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.