×

zbMATH — the first resource for mathematics

The Frattini module. (English) Zbl 0362.20006

MSC:
20C20 Modular representations and characters
20J05 Homological methods in group theory
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
PDF BibTeX Cite
Full Text: DOI
References:
[1] J. Alperin andG. Janusz, Resolutions and periodicity. Proc. Amer. Math. Soc.37, 403-406 (1973). · Zbl 0253.20077
[2] D. W.Barnes, P.Schmid, and U.Stammbach, Cohomological characterizations of saturated formations and homomorphs of finite groups. To appear in Comm. Math. Helv. · Zbl 0383.20032
[3] R. Brauer, Some applications of the theory of blocks of characters of finite groups, I. J. Algebra1, 152-167 (1964). · Zbl 0214.28101
[4] W. Gasch?tz, ?ber modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert werden. Math. Z.60, 274-286. (1954) · Zbl 0056.02401
[5] K. W.Gruenberg, Cohomological topics in group theory. LNM143. Berlin-Heidelberg-New York 1970. · Zbl 0205.32701
[6] K. W.Gruenberg, Relation modules of finite groups. Amer. Math. Soc. Regional Conference Series in Math.25, 1976. · Zbl 0327.20019
[7] H. Hasse undF. K. Schmidt, Die Struktur diskret bewerteter K?rper. J. reine angew. Math.170, 4-63 (1934). · JFM 59.0154.03
[8] A. Heller, Indecomposable representations of the loop-space operation. Proc. Amer. Math. Soc.12, 640-643 (1961). · Zbl 0100.26501
[9] L. L. Scott, Matrices and cohomology. Ann. of Math.105, 473-492 (1977). · Zbl 0399.20047
[10] J.-P.Serre, Linear representations of finite groups. Berlin-Heidelberg-New York 1977.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.