zbMATH — the first resource for mathematics

Polynomial interpolation methods for viscous flow calculations. (English) Zbl 0362.76057

76D05 Navier-Stokes equations for incompressible viscous fluids
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
65N06 Finite difference methods for boundary value problems involving PDEs
Full Text: DOI
[1] Ahlberg, G.H.; Nilson, E.N.; Walsh, J.L., The theory of splines and their applications, (1967), Academic Press new York · Zbl 0158.15901
[2] Graves, R.A., Higher-order accurate partial implicitization: an unconditionally stable fourth-order accurate explicit numerical technique, Nasa tn 8021, (1975)
[3] Hirsh, R., Higher-order accurate difference solutions of fluid mechanics problems by a compact differencing technique, J. computational phys., 19, 90-109, (1975) · Zbl 0326.76024
[4] Krauss, E.; Hirschel, E.H.; Kordulla, W., Fourth-order “mehrstellen”-integration for three dimensional turbulent boundary layers, (), 92-102 · Zbl 0334.76030
[5] Adam, Y., A Hermitian finite difference method for the solution of parabolic equations, Comp. math. appl., 1, 393, (1975) · Zbl 0356.65086
[6] Peters, N., Boundary layer calculation by an Hermitian-finite difference method, () · Zbl 0354.65051
[7] Rubin, S.G.; Graves, R.A., Viscous flow solutions with a cubic spline approximation, J. compt. fluids, 3, 1-36, (1975) · Zbl 0347.76020
[8] Rubin, S.G.; Koshla, P.K.; Rubin, S.G.; Koshla, P.K., Higher-order numerical solutions using cubic splines, Aiaa j., Nasa CR-2653, 14, 851-858, (1975), See also · Zbl 0344.65048
[9] Fyfe, D.J., The use of cubic splines in the solution of two-point boundary value problems, Compt. J., 12, 188-192, (1969) · Zbl 0185.41404
[10] Albasiny, E.L.; Hoskins, W.D., Increased accuracy cubic spline solutions to two-point boundary value problems, J. inst. math. appl., 9, 47-55, (1972) · Zbl 0243.65050
[11] Papamichael, N.; Whiteman, J.R., A cubic spline technique for the one dimensional heat conduction equations, J. inst. math. appl., 9, 111-113, (1973) · Zbl 0264.65056
[12] Rosenhead, L., Laminar boundary layers, (1963), Oxford Univ., Press London · Zbl 0115.20705
[13] Emmons, H.W.; Leigh, D., Tabulation of the Blasius function with blowing and suction, Cum. pap. aero. res. coun. London, no. 157, (1953)
[14] Catherall, D.; Stewartson, K.; Williams, P.G., Viscous flow past a flat plate with uniform injection, (), 370-396 · Zbl 0142.43702
[15] Staff Langley Research Center, Numerical studies of incompressible viscous flow in a driven cavity, Nasa sp-378, (1975)
[16] Rubin, S.G.; Lin, T.C., A numerical method for three dimensional viscous flow: application to the hypersonic leading edge, J. computational phys., 9, 339-364, (1972) · Zbl 0243.76040
[17] Rubin, S.G., A predictor-corrector method for three coordinate viscous flows, (), 146-153
[18] Buneman, O., A compact non-iterative possion solver, ()
[19] Burstein, S.Z., (), 279-290
[20] Abarbanel, G.; Gottlieb, D.; Turkel, E., Difference schemes with fourth-order accuracy for hyperbolic equations, SIAM J. appl. math., 29, 329-351, (1975) · Zbl 0325.65041
[21] Ceschino, F.; Kutzmann, J., Numerical solution of initial value problems, (1966), Prentice-Hall Englewood Cliffs, N.J · Zbl 0154.17003
[22] Watanabe, D.S.; Flood, J.R., An implicit fourth-order difference method for viscous flows, Coord. sci. labs., university of illinois, report R-572, (1972)
[23] Richtmyer, R.D.; Morton, K.W., Difference methods for initial-value problems, (1967), Interscience New York · Zbl 0155.47502
[24] Rubin, S.G.; Khosla, P.K., Higher-order numerical methods derived from three-point polynomial interpolation, Nasa CR 2735, (1976) · Zbl 0373.76025
[25] \scR. E. Smith, private communication, 1976.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.