×

Une nouvelle classe d’espace de Banach vérifiant le théorème de Grothendieck. (French) Zbl 0363.46019


MSC:

46B10 Duality and reflexivity in normed linear and Banach spaces
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] A. DVORETZKY, Some results on convex bodies and Banach spaces, Proc. Symp. on Linear Spaces, Jerusalem 1961. · Zbl 0119.31803
[2] A. DVORETZKY et C.A. ROGERS, Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. (U.S.A.), 36 (1950), 192-197. · Zbl 0036.36303
[3] A. GROTHENDIECK, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Matem., Sao Paulo, 8 (1956), 1-79. · Zbl 0074.32303
[4] M.I. KADEC et A. PELCZYNSKI, Bases, lacunary sequences and complemented subspaces in the spaces Lρ, Studia Math., 21 (1962), 161-176. · Zbl 0102.32202
[5] J.L. KRIVINE, Théorèmes de factorisation dans LES espaces réticulés, Séminaire Maurey-Schwartz 73-74, Exposé 22-23. · Zbl 0295.47024
[6] J. LINDENSTRAUSS, The geometric theory of the classical Banach spaces, Actes Congrès intern. Math., Nice (1970), Gauthiers-Villars, Paris, tome 2 p. 365-372. · Zbl 0224.46032
[7] J. LINDENSTRAUSS et A. PELCZYNSKI, Absolutely summing operators in Lρ spaces and their applications, Studia Math., 29 (1968), 275-326. · Zbl 0183.40501
[8] J. LINDENSTRAUSS et H.P. ROSENTHAL, Automorphisms in cϑ, l1 and m, Israel J. Math., 7 (1969), 227-239. · Zbl 0186.18602
[9] J. LINDENSTRAUSS et H.P. ROSENTHAL, The Lρ spaces, Israel J. Math., 7 (1969) 325-349. · Zbl 0205.12602
[10] J. LINDENSTRAUSS et M. ZIPPIN, Banach spaces with sufficiently many Boolean algebras of projections, Journal Math. Anal. and Appl., 25 (1969), 309-320. · Zbl 0174.17103
[11] J.L. LIONS et J. PEETRE, Sur une classe d’espaces d’interpolation, Publ. Math. I.H.E.S., 19 (1963), 5-68. · Zbl 0148.11403
[12] B. MAUREY, Une nouvelle démonstration d’un théorème de Grothendieck, Séminaire Maurey-Schwartz 73-74, exposé 22. · Zbl 0262.47014
[13] B. MAUREY, Théorèmes de factorisation pour LES opérateurs à valeurs dans un espace Lρ, Astérisque, Soc. Math. France, (1974) n° 11. · Zbl 0278.46028
[14] B. MAUREY et G. PISIER, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math., 58 (1976), 45-90. · Zbl 0344.47014
[15] A. PELCZYNSKI, P-integral operators commuting with group representations and examples of quasi p-integral operators which are not p-integral, Studia Math., 33 (1969), 63-70. · Zbl 0189.43701
[16] A. PIETSCH, Absolute p-summierende abbildungen in normierten raümen, Studia Math., 28 (1967), 333-353. · Zbl 0156.37903
[17] H.P. ROSENTHAL, On injective Banach spaces and the spaces L∞(µ) for finite measures µ, Acta Math., 124 (1970), 205-248. · Zbl 0207.42803
[18] H.P. ROSENTHAL, On subspaces of lp, Annals of Math., 97 (1973), 344-373. · Zbl 0253.46049
[19] W. RUDIN, Trigonometric series with gaps, Journal Math. Mech., 9 (1960), 203-227. · Zbl 0091.05802
[20] A. TONGE, Banach algebras and absolutely summing operators, Math. Proc. Cambridge Phil. Soc., 80 (1976), 465-473. · Zbl 0338.46040
[21] N.Th. VAROPOULOS, A theorem on operator algebras, Math. Scand., 37, (1975), 173-182. · Zbl 0337.46041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.