×

zbMATH — the first resource for mathematics

Controlled Galton-Watson process and its asymptotic behavior. (English) Zbl 0365.60084

MSC:
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
93E20 Optimal stochastic control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D. J. DALEY (1968), Extinction conditions for certain bisexual Galton-Watson branching processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 315-322. · Zbl 0157.46602 · doi:10.1007/BF00531755
[2] T. E. HARRIS (1963), The theory of branching processes, Springer · Zbl 0117.13002
[3] H. KESTEN (1970), Quadratic transformations : A model for population growth, Adv. Appl. Probability, 2, 1-82, 179-228 · Zbl 0328.92011 · doi:10.2307/3518344
[4] H. KESTEN (1971), Some nonlinear stochastic growth models, Bull. Amer Math. Soc, 77, 492-511. · Zbl 0307.92012 · doi:10.1090/S0002-9904-1971-12732-5
[5] H. KESTEN (1972), Limit theorems for stochastic growth models, Adv. Appl Probability, 4, 193-232, 393-428. · Zbl 0266.60017 · doi:10.2307/1425996
[6] H. KESTEN and B. P. STIGUM (1966), A limit theorem for multidimensiona Galton-Watson processes, Ann. Math. Statis. 37, 1211-1223. · Zbl 0203.17401 · doi:10.1214/aoms/1177699266
[7] H. KESTEN and B. P. STIGUM (1972), Balanced growth under uncertainty in de composable economies (preprint).
[8] V. A. LABKOVSK (1972), A limit theorem for generalized branching processe dependent on the size of the population, Teor. Veroyat. Primen., 17, 71-83. · Zbl 0279.60077 · doi:10.1137/1117006
[9] L. V. LEVINA, A. M. LEONTOVICH and I. I. PYATETSK-SHAPIRO (1968), Acon trollable branching process, Problemy Peredachi Informatsii, 4, 72-82. · Zbl 0259.60036
[10] P. A. MEYER (1966), Probability and potentials, Blaisdell · Zbl 0138.10401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.