×

Quantum completely integrable systems connected with semi-simple Lie algebras. (English) Zbl 0366.58005


MSC:

37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] OlshanetskyM.A. and PerelomovA.M. Lett. Math. Phys. 1, 187 (1976); Invent. Math. 37, 93 (1976). · Zbl 0343.70010
[2] CalogeroF., J. Math. Phys. 10, 2191, 2197 (1969).
[3] CalogeroP., J. Math. Phys. 12, 419 (1971).
[4] PerelomovA.M., Soviet J. Theor. Math. Phys. 6, 263 (1971).
[5] SutherlandB., Phys. Rev. A 4, 2019 (1971), A5, 1372 (1972).
[6] MoshinskyM., PateraJ., and WinternitzP., J. Math. Phys. 16, 82 (1975); Moshinsky, M. and Patera, J., J. Math. Phsy. 16, 1866 (1975).
[7] GambardellaP.J., J. Math. Phys. 16, 1172 (1975).
[8] CalogeroP., MarchioroC., and RagniscoO., Letters Nuovo Cimento 13, 383 (1975).
[9] WolfesJ., J. Math. Phys. 15, 1420 (1974).
[10] CalogeroF. and MarchioroC., J. Math. Phys. 15, 1425 (1974).
[11] ChevalleyC., Am. J. Math. 77, 778 (1955). · Zbl 0065.26103
[12] HelgasonS., Differential Geometry and Symmetric Spaces, Academic Press, N.Y., 1962.
[13] WojciechowskiS., Phys. Letters A 59, 84 (1976).
[14] SawadaK. and KoteraT., J. Phys. Soc. Japan 39, 1614 (1975). · Zbl 1334.82026
[15] CalogeroF., Letters Nuovo Chimento 13, 411 (1975).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.