×

zbMATH — the first resource for mathematics

Pseudo-random numbers and optimal coefficients. (English) Zbl 0366.65004

MSC:
65C10 Random number generation in numerical analysis
11J70 Continued fractions and generalizations
11K06 General theory of distribution modulo \(1\)
68U20 Simulation (MSC2010)
PDF BibTeX Cite
Full Text: DOI
References:
[1] Beyer, W.A, Lattice structure and reduced bases of random vectors generated by linear recurrences, (), 361-370 · Zbl 0257.65099
[2] Beyer, W.A; Roof, R.B; Williamson, D, The lattice structure of multiplicative congruential pseudo-random vectors, Math. comp., 25, 345-363, (1971) · Zbl 0269.65003
[3] Coveyou, R.R, Serial correlation in the generation of pseudo-random numbers, J. assoc. comput. Mach., 7, 72-74, (1960) · Zbl 0096.33903
[4] Dieter, U, Pseudo-random numbers: the exact distribution of pairs, Math. comp., 25, 855-883, (1971) · Zbl 0257.65010
[5] Dieter, U, Statistical interdependence of pseudo-random numbers generated by the linear congruential method, (), 287-317
[6] {\scU. Dieter}, Pseudo-random numbers: Permutations of triplets, preprint.
[7] Dieter, U; Ahrens, J, An exact determination of serial correlation of pseudo-random numbers, Numer. math., 17, 101-123, (1971) · Zbl 0228.65006
[8] Franklin, J.N, Deterministic simulation of random processes, Math. comp., 17, 28-59, (1963) · Zbl 0124.34601
[9] Greenberger, M, An a priori determination of serial correlation in computer generated random numbers, Math. comp., 15, 383-389, (1961) · Zbl 0113.33504
[10] Haber, S, Experiments on optimal coefficients, (), 11-37
[11] Hardy, G.H; Wright, E.M, An introduction to the theory of numbers, (1960), Clarendon Press Oxford · Zbl 0086.25803
[12] Hlawka, E, Zur angenäherten berechnung mehrfacher integrale, Monatsh. math., 66, 140-151, (1962) · Zbl 0105.04603
[13] Hlawka, E, Uniform distribution modulo 1 and numerical analysis, Comp. math., 16, 92-105, (1964) · Zbl 0146.27602
[14] Jagerman, D.L, Some theorems concerning pseudo-random numbers, Math. comp., 19, 418-426, (1965) · Zbl 0154.04803
[15] Jansson, B, Random number generators, (1966), Almqvist and Wiksell Stockholm · Zbl 0154.43902
[16] Kedem, G; Zaremba, S.K, A table of good lattice points in three dimensions, Numer. math., 23, 175-180, (1974) · Zbl 0288.65006
[17] Knuth, D.E, The art of computer programming, vol. 2: seminumerical algorithms, (1969), Addison-Wesley Reading, Mass., · Zbl 0191.18001
[18] Korobov, N.M, The approximate computation of multiple integrals, Dokl. akad. nauk SSSR, 124, 1207-1210, (1959), (In Russian.) · Zbl 0089.04201
[19] Korobov, N.M, Number-theoretical methods in approximate analysis, (1963), Fizmatgiz Moscow, (In Russian.) · Zbl 0115.11703
[20] Kuipers, L; Niederreiter, H, Uniform distribution of sequences, (1974), Wiley-Interscience New York · Zbl 0281.10001
[21] Lehmer, D.H, Mathematical methods in large-scale computing units, (), 141-146 · Zbl 0045.40001
[22] Maisonneuve, D, Recherche et utilisation des “bons treillis,” programmation et résultats numériques, (), 121-201 · Zbl 0264.65026
[23] Marsaglia, G, Random numbers fall mainly in the planes, (), 25-28 · Zbl 0172.21002
[24] Marsaglia, G, The structure of linear congruential sequences, (), 249-285
[25] Meijer, H.G; Niederreiter, H, Équirépartition et théorie des nombres premiers, colloque sur la répartition modulo un (Marseille, 1974), (), 104-112
[26] Niederreiter, H, Methods for estimating discrepancy, (), 203-236
[27] Niederreiter, H, On the distribution of pseudo-random numbers generated by the linear congruential method, Math. comp., 26, 793-795, (1972) · Zbl 0258.65004
[28] Niederreiter, H, Application of Diophantine approximations to numerical integration, (), 129-199
[29] Niederreiter, H, On the distribution of pseudo-random numbers generated by the linear congruential method. II, Math. comp., 28, 1117-1132, (1974) · Zbl 0303.65003
[30] Niederreiter, H, Résultats nouveaux dans la théorie quantitative de l’équirépartition, colloque sur la répartition modulo un (Marseille, 1974), (), 132-154
[31] Niederreiter, H, Some new exponential sums with applications to pseudo-random numbers, (), 209-232
[32] Niederreiter, H, On the distribution of pseudo-random numbers generated by the linear congruential method. III, Math. comp., 30, 571-597, (1976) · Zbl 0342.65002
[33] {\scH. Niederreiter}, The serial test for linear congruential pseudo-random numbers, Bull. Amer. Math. Soc., to appear. · Zbl 0388.65005
[34] Niederreiter, H; Philipp, W, Berry-Esseen bounds and a theorem of Erdös and Turán on uniform distribution mod. I, Duke math. J., 40, 633-649, (1973) · Zbl 0273.10043
[35] Perron, O, (), 3. Aufl.
[36] Rademacher, H, Topics in analytic number theory, (1973), Springer-Verlag New York/Heidelberg/Berlin · Zbl 0253.10002
[37] Saltykov, A.I, Tables for computing multiple integrals by the method of optimal coefficients, Ž. vyčǐsl. mat. i mat. fiz., 3, 181-186, (1963), (In Russian.) · Zbl 0125.08203
[38] Watson, G.N, A treatise on the theory of Bessel functions, (1962), Cambridge Univ. Press London · JFM 48.0412.02
[39] Zaremba, S.K, Good lattice points, discrepancy, and numerical integration, Ann. mat. pura appl., 73, 293-317, (1966), Ser. IV · Zbl 0148.02602
[40] Zaremba, S.K, A remarkable lattice generated by Fibonacci numbers, Fibonacci quart., 8, 185-198, (1970) · Zbl 0213.05801
[41] Zaremba, S.K, La méthode des “bons treillis” pour le calcul des intégrales multiples, (), 39-119 · Zbl 0246.65009
[42] Zaremba, S.K, Good lattice points modulo composite numbers, Monatsh. math., 78, 446-460, (1974) · Zbl 0292.10023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.