Brylawski, Tom The broken-circuit complex. (English) Zbl 0368.05022 Trans. Am. Math. Soc. 234, 417-433 (1977). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 35 Documents MSC: 05B35 Combinatorial aspects of matroids and geometric lattices 05C15 Coloring of graphs and hypergraphs 05B25 Combinatorial aspects of finite geometries 57M15 Relations of low-dimensional topology with graph theory 57N05 Topology of the Euclidean \(2\)-space, \(2\)-manifolds (MSC2010) PDF BibTeX XML Cite \textit{T. Brylawski}, Trans. Am. Math. Soc. 234, 417--433 (1977; Zbl 0368.05022) Full Text: DOI References: [1] Norman Biggs, Algebraic graph theory, Cambridge University Press, London, 1974. Cambridge Tracts in Mathematics, No. 67. · Zbl 0284.05101 [2] Thomas H. Brylawski, A combinatorial model for series-parallel networks, Trans. Amer. Math. Soc. 154 (1971), 1 – 22. · Zbl 0215.33702 [3] Thomas H. Brylawski, A decomposition for combinatorial geometries, Trans. Amer. Math. Soc. 171 (1972), 235 – 282. · Zbl 0224.05007 [4] Tom Brylawski and Douglas G. Kelly, Matroids and combinatorial geometries, Studies in combinatorics, Math. Assoc. America, Washington, D.C., 1978, pp. 179 – 217. MAA Studies in Math., 17. · Zbl 0405.05020 [5] Henry H. Crapo, The Tutte polynomial, Aequationes Math. 3 (1969), 211 – 229. · Zbl 0197.50202 · doi:10.1007/BF01817442 · doi.org [6] Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory: Combinatorial geometries, Preliminary edition, The M.I.T. Press, Cambridge, Mass.-London, 1970. · Zbl 0231.05024 [7] Thomas A. Dowling and Richard M. Wilson, Whitney number inequalities for geometric lattices, Proc. Amer. Math. Soc. 47 (1975), 504 – 512. · Zbl 0297.05010 [8] Gian-Carlo Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340 – 368 (1964). · Zbl 0121.02406 · doi:10.1007/BF00531932 · doi.org [9] Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. · Zbl 0145.43303 [10] Richard P. Stanley, Acyclic orientations of graphs, Discrete Math. 5 (1973), 171 – 178. · Zbl 0258.05113 · doi:10.1016/0012-365X(73)90108-8 · doi.org [11] W. T. Tutte, A contribution to the theory of chromatic polynomials, Canadian J. Math. 6 (1954), 80 – 91. · Zbl 0055.17101 [12] Hassler Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932), no. 8, 572 – 579. · Zbl 0005.14602 [13] Herbert S. Wilf, Which polynomials are chromatic?, Colloquio Internazionale sulle Teorie Combinatorie (Roma, 1973) Accad. Naz. Lincei, Rome, 1976, pp. 247 – 256. Atti dei Convegni Lincei, No. 17 (English, with Italian summary). [14] Tom Brylawski, Modular constructions for combinatorial geometries, Trans. Amer. Math. Soc. 203 (1975), 1 – 44. · Zbl 0299.05023 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.