zbMATH — the first resource for mathematics

Comparisons of Kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains. (English) Zbl 0368.31006

31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
Full Text: DOI Numdam EuDML
[1] A. ANCONA, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, Ann. Inst. Fourier, (to appear). · Zbl 0377.31001
[2] A. S. BESICOVITCH, A general form of the covering principle and relative differentiation of additive functions II, Proc. Cambridge Philos. Soc., 42 (1946), 1-10. · Zbl 0063.00353
[3] M. BRELOT, Remarques sur LES zéros à la frontière des fonctions harmoniques positives, Un. Mat. Ita., Boll., Suppl., Ser. 4, 12 (1975), 314-319. · Zbl 0338.31004
[4] M. BRELOT et J. L. DOOB, Limites angulaires et limites fines, Ann. Institut Fourier, 13, 2 (1963), 395-415. · Zbl 0132.33902
[5] B. DAHLBERG, On estimates of harmonic measure, Arch. Rational Mech. Anal., 65, N° 3 (1977), 275-288. · Zbl 0406.28009
[6] J. L. DOOB, A relativized Fatou theorem, Proc. Nat. Acad. Sc., 45 (1959), N° 2, 215-222. · Zbl 0106.07801
[7] K. GOWRISANKARAN, Fatou-naim-Doob limit theorems in the axiomatic system of Brelot, Ann. Inst. Fourier, 16, 2 (1966), 455-467. · Zbl 0145.15103
[8] R. A. HUNT and R. L. WHEEDEN, On the boundary values of harmonic functions, Trans. Amer. Math. Soc., 132 (1968), 307-322. · Zbl 0159.40501
[9] R. A. HUNT and R. L. WHEEDEN, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc., 147 (1970), 507-527. · Zbl 0193.39601
[10] J. T. KEMPER, A boundary Harnack principle for Lipschitz domains and the principle of positive singularities, Comm. Pure Applied Math., 25 (1972), 247-255. · Zbl 0226.31007
[11] J.-M. WU, On functions subharmonic in a Lipschitz domain, Proc. Amer. Math. Soc. (to appear). · Zbl 0377.31007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.