×

zbMATH — the first resource for mathematics

Geometric reductivity over arbitrary base. (English) Zbl 0371.14009

MSC:
14D20 Algebraic moduli problems, moduli of vector bundles
14L99 Algebraic groups
PDF BibTeX Cite
Full Text: DOI
References:
[1] Borel, A, Linear representations of semi-simple algebraic groups, () · Zbl 0311.20022
[2] Chevalley, C, Classification des groupes de Lie algébriques, () · JFM 61.0612.03
[3] {\scM. Demazure and P. Gabriel}, “Groupes algébriques,” Tome I, Masson, Paris, North-Holland, Amsterdam.
[4] {\scM. Demazure and A. Grothendieck}, “SGA3, Schémas en Groupes,” Lecture Notes in Mathematics, Vols. 151, 152, 153, Springer-Verlag, Berlin.
[5] Demazure, M, Schémas en groupes réductifs, Bull. soc. math. France, 93, 365-413, (1965) · Zbl 0163.27402
[6] {\scA. Grothendieck and J. Dieudonné}, Éléments de Géométrie algébrique (EGA), Inst. des Hautes Études Sci., Publ. Math.
[7] Haboush, W.J, Reductive groups are geometrically reductive, Ann. math., 102, 67-83, (1975) · Zbl 0316.14016
[8] Kaplansky, I, Projective modules, Annals of math., 68, 372-377, (1958) · Zbl 0083.25802
[9] Mumford, D, Geometric invariant theory, () · Zbl 0147.39304
[10] Nagata, M, Invariants of a group in an affine ring, J. math. Kyoto univ., 3, 369-377, (1963) · Zbl 0146.04501
[11] Raynaud, M, Flat modules in algebraic geometry, (), 255-275, Oslo · Zbl 0244.14002
[12] Seshadri, C.S, Mumford’s conjecture for GL(2) and applications, (), 347-371 · Zbl 0194.51702
[13] Seshadri, C.S, Quotient spaces modulo reductive algebraic groups, Ann. math., 95, 511-556, (1972) · Zbl 0241.14024
[14] Steinberg, R, Prime power representations of finite linear groups II, Canad. J. math., 9, 347-351, (1957) · Zbl 0079.25601
[15] Steinberg, R, Representations of algebraic groups, Nagoya math. J., 22, 33-56, (1963) · Zbl 0271.20019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.