×

zbMATH — the first resource for mathematics

Stochastic time evolution of one dimensional infinite particle systems. (English) Zbl 0372.60149

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60K05 Renewal theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] G. Choquet, Lectures on analysis. Vol. II, Benjamin, New York, 1969. MR 40 #3253. · Zbl 0181.39602
[2] J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London, 1953. · Zbl 0053.26802
[3] M. Fisher and B. Widom, Decay of correlations in linear systems, J. Chem. Phys. 9 (1969), 3756-3772.
[4] L. F. Gray, Controlled spin-flip systems, Ph. D. Dissertation, Cornell University, 1977 (to appear). · Zbl 0392.60084
[5] R. A. Holley and D. W. Stroock, Nearest neighbor birth and death processes on the real line, Acta Math. 140 (1978), no. 1-2, 103 – 154. · Zbl 0405.60090 · doi:10.1007/BF02392306 · doi.org
[6] A. Kolmogoroff, Zur Umkehrbarkeit der statistischen Naturgesetze, Math. Ann. 113 (1937), no. 1, 766 – 772 (German). · Zbl 0015.26004 · doi:10.1007/BF01571664 · doi.org
[7] Reinhard Lang, Unendlich-dimensionale Wienerprozesse mit Wechselwirkung. I. Existenz, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 38 (1977), no. 1, 55 – 72. · Zbl 0349.60103 · doi:10.1007/BF00534170 · doi.org
[8] T. M. Liggett, The stochastic evolution of infinite systems of interacting particles, École d’Été de Probabilités de Saint-Flour, VI — 1976, Springer-Verlag, Berlin, 1977, pp. 187 – 248. Lecture Notes in Math., Vol. 598.
[9] K. G. Logan, Time reversible evolutions in statistical mechanics, Ph. D. Dissertation, Cornell University, 1974.
[10] Czesław Ryll-Nardzewski, Remarks on processes of calls, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, Univ. California Press, Berkeley, Calif., 1961, pp. 455 – 465.
[11] Frank Spitzer, Interaction of Markov processes, Advances in Math. 5 (1970), 246 – 290 (1970). · Zbl 0312.60060 · doi:10.1016/0001-8708(70)90034-4 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.